# **BALASORE ALLOYS LIMITED**



Date: 30.04.2018

### CIN-L27101OR1984PLC001354

BAL/Mines/MoEF & CC/4903

The Director (S),
Ministry of Environment Forests & Climate Changes
Eastern Regional office, A/3, Chandrasekharpur,
Bhubaneswar – 751023

Sub: Six-monthly Compliance Report of conditions of Environment Clearance Vide No. J-11015/139/2012-IA.II (M) dated 22.08.2014 with respect to Kaliapani Chromite Mines of M/s- Balasore Alloys Ltd for the period of October, 2017 to March, 2018.

Ref: Environment Clearance No. J-11015/139/2012-IA.II (M) dated 22.08.2014.

Dear Sir,

Enclosing herewith six monthly compliance report on the status of the conditions stipulated in the Environmental Clearance Vide No. J-11015/139/2012-IA.II (M) dated 22.08.2014 of the period from October,2017 to March,2018 with respect to our Kaliapani Chromite Mines, M/s Balasore Alloys Ltd (ML area 64.463 ha) for your kind perusal.

Thanking you,

Yours faithfully,

For Balasore Alloys Ltd

Swarup Panda

Sr. Vice President (Corporate Affairs)

Encl: As above

Copy to:

1. The Member Secretary, State Pollution Control Board, Paribesh Bhawan A/118 Nilakantha Nagar Unit-VIII, Bhubaneswar -751012.

2. Shri R. C Saxena (Scientist 'E' & In charge), Central Pollution Control Board, Southern Conclave, 1582, Raidanga Main Road, Kolkata-700107.

PS to APCCF (Central)

# Report on

"Status of Compliance to Conditions Stipulated by MoEF &CC in Environmental Clearance Order Vide No J-11015/139/2012-IA.II (M) dated 22.08.2014 in Respect of Kaliapani Chromite Mines."

(ML Area 64.463ha)"

(Period October, 2017-March, 2018)

### **Submitted to:**

- Ministry Of Environment, Forest and Climate Changes
   Regional Office (EZ) A/3 ,Chadrasekharpur, Bhubaneswar,
   Odisha.
- The Member Secretary, State Pollution Control Board, Paribesh Bhawan A/118 Nilakantha Nagar Unit-VIII, Bhubaneswar -751012.
- Shri R. C Saxena (Scientist'E' & In charge), Central Pollution Control Board, Southernd Conclave, 1582, Raidanga Main Road, Kolkata-700107.

## **Submitted By:**

Kaliapani Chromite Mines

M/s Balasore Alloys Ltd

At/Po: Kaliapani, Dist Jajpur, Odihsa



| Cond        | Specific Conditions  Condition                                                                                                                                                                                                          | Compliance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ition<br>No | Condition                                                                                                                                                                                                                               | Сопірнансе                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| i           | Mining shall not commence without necessary permissions for drawl of water and intersection of ground water table                                                                                                                       | Permission has been obtained for drawl of water and intersection of ground water table during mining activities from Central Ground Water Authority, Govt. Of India ,Ministry Of Water Resource, vide CGWA/NOC/MIN/ORIG/2015/2122 Dated 10.12.2015 , for quantity of ground water drawl 3293 m³/Day (3188 m³/Day from Mine Dewater & 105 m³/Day from Bore well). Application for renewal of NOC has been submitted at CGWA,Bhubaneswar and same has been recommended for renewal. Copy of recommendation letter from CGWA, South Eastern region BBSR to CGWA,New Delhi attached as Annexure-I.                  |
| ii          | Mitigation measures such as well-designed ventilation network within underground mine, provision of Personal Protective Equipment should be ensured and necessary training and awareness programs for mine workers should be undertaken | Underground mining has not been started yet, however Ventilation fan shall be provided within underground mine in order to control the air pollution during same.  Necessary PPEs viz helmet, Dust mask etc is being/shall be provided to the employees. Training and awareness programme for mine worker regarding health Safety and Environment is going on regular basis and shall be continued.                                                                                                                                                                                                             |
| iii         | Continuous monitoring of Mine water should be done and reports furnished                                                                                                                                                                | Mine water from mine pit is channelized to up graded ETP designed as per the recommendation of IIT, Kharagpur for treatment, continuous monitoring of quality and quantity of Mine water (viz parameters pH, TSS, Cr+6, Flow Rate) is going on through online monitoring system installed at ETP Outlet and Inlet as per the Guidelines by CPCB for Real-time Effluent Quality Monitoring System. The monitoring data also transferred to OSPCB website through Real data Acquisition System. The data downloaded from OSPCB website for the period of Oct, 2017 to March, 2018 is attached <b>Annexure-II.</b> |
| iv          | Continuous monitoring of all drinking water sources for Cr(VI) of Mine water should be done and reports furnished                                                                                                                       | Monitoring of drinking water sources at six different locations including mines are being done on monthly basis and report submitted to State Pollution Control Board.  The analysis report of the period of October, 2017                                                                                                                                                                                                                                                                                                                                                                                      |

to March, 2018 is attached as **Annexure-III.** Morbidity pattern which is a A study on morbidity pattern has been done by sensitive indicator of ill health Institute of engaging Asian Public Health, with regard to Cr related Bhubaneswar with overall aim to create baseline diseases need to be done. data base on current status of occupational health risks especially morbidity pattern with regard to Chromium and air born dust associated with the facility & identify unhealthy behavior of exposures. The findings of assessment show that, problems with vision (28%), Breathlessness (22%), Headache (22%) ν are the major contributors towards the current morbidity conditions. Hence it is hereby concluded that, there is no definite pattern/figure to be mentioned as the key indicator of the morbidity resulting from chrome related exposure rather it indicate that the pattern of morbidity follows the general trend of villages or urban areas elsewhere. Based upon the outcome of result, action is being taken. Mine water discharge and/or any waste water shall be Mine water discharge is channelized to Effluent properly treated in an ETP/s for Treatment Plant present at mines to remove the the removal of hexavalent Cr+6 and some of treated water are used for Dust chromium and to meet the Suppression, Plantation, COBP and rest discharged prescribed standards before outside. Regular monitoring of treated water is going reuse/discharge. The runoff on through Online analyzer and report transferred to from OB dumps and other OSPCB website through RTDAS. surface run off shall be analyzed The Run-off from OB dumps and other surface run vi for hexavalent chrome and in off are properly collected through garland drains, case its concentration is found settling pond & channelized to ETP by pump & than the permissible higher pipeline facility for proper treatment before limit, the waste water should be discharge to outside. treated before discharge/reuse. Run off from OB dumps and other surface run-off are being analyzed on fortnightly basis during monsoon period. Report of the surface runoff analysis for last rainy season attached Annexure-IV. project proponent shall Consent to establish has obtained from SPCB,Odisha obtain Consent to Establish and vide letter No. 18196/ IND-II-NOC-5723 dated Consent to Operate from the 08.10.2013 & subsequently Consent to Operate has obtained from SPCB, Odisha vide letter No. 3749/ State Pollution Control Board, Odisha and effectively implement IND-I-CON-2576 dated 28.03.2018 valid upto vii all the conditions stipulated 31.3.2023. Copy of the same are attached as therein Annexure- V &VI respectively. All the conditions stipulated in Consent to Establish and Consent to Operate are effectively implemented

| Alloys | Alloys Ltd as on 31.3.2018                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                            | and compliance being submitted to State Pollution Control Board, Odisha annual basis .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| viii   | Traffic density on the route of mineral transportation shall be regularly monitored and report shall be submitted along with compliance report.                                                                                                                                                                                                                                                                                                            | Traffic density is being monitored on the route of mineral transportation at three locations and the monitoring report is attached as <b>Annexure-VII</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| i<br>X | As part of ambient air quality monitoring during operational phase of the project, the air samples shall also be analyzed for their mineralogical composition and records maintained                                                                                                                                                                                                                                                                       | The ambient air quality is being monitored at six locations of core and buffer zone of the lease area. The air samples are being analysed for all the 12 parameters as per CPCB guideline engaging third party and data recorded. The analysis report of the same is attached as <b>Annexure-VIII</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| х      | Mineral handling plant shall be provided with adequate number of high efficiency dust extraction system. Loading and unloading areas including all the transfer points should also have efficient dust control arrangements. These should be properly maintained and operated                                                                                                                                                                              | There is no crusher and screening Plant running at mines. Mineral handling plant in the form of chrome ore beneficiation is in operation and working in wet process.  However water sprinkling is going on through fixed sprinkler inside COB area and through water tankers at loading and unloading points including transfer points regularly to control the generation of dust.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| xi     | Effective safeguard measures such as conditioning of ore with water, regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of particulate matter such as around crushing and screening plant, loading and unloading point and transfer points. It should be ensured that the Ambient Air Quality parameters conform to the norms prescribed by the Central Pollution Control Board in this regard. | Regular water sprinkling has been going on engaging two nos of water tankers of 20 KL capacity at critical areas prone to air pollution and having high levels of particulate matter such as loading and unloading point, transfer points, haul road & stack area etc. Fixed type of sprinklers also installed at Strategic area viz. COB plant, haul road to arrest the fugitive dust. Photos of same given as <b>Annexure-IX</b> . Ambient air quality monitoring is being done by establishing 6 ambient air monitoring stations in core and buffer zone of the lease area. The analysis result of all the parameters conform to the norms prescribed by the Central Pollution Control Board. The monitoring data for the period October, 2017 to March, 2018 is attached as <b>Annexure-VIII</b> . |
| xii    | The project authority shall implement suitable conservation measures to augment ground water resources in the area in consultation with the Regional Director, Central Ground Water Board                                                                                                                                                                                                                                                                  | Rooftop rain water harvesting structure has implemented to augment ground water resources in the area in consultation with the Regional Director, Central Ground Water Board and construction of another structure is in process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| <u> </u> | Ltu ds 011 51.5.2016                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                 | FI STALL OF LITE OF LI |
|          | Regular monitoring of ground                                    | Regular monitoring of ground water level & quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | water level and quality shall be                                | has been monitored on quarterly basis at core and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | carried out in and around the                                   | buffer zone at six different locations & data has been                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | mine lease by establishing a                                    | sent to the Ministry of Environment and Forests and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          | network of existing wells and                                   | its Regional Office Bhubaneswar, the Central                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | installing new piezo meters                                     | Ground Water Authority and the Regional Director,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | during the mining operation. The periodic monitoring [(at least | Central Ground Water Board on regular basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | four times in a year- pre-                                      | We have installed four nos of Piezometers inside                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | monsoon (April- May), monsoon                                   | Core Zone and One piezometric at Vimtangar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | (August), post-monsoon                                          | village to measure the ground water level.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | (November) and winter                                           | Monitoring report reveals that there is no significant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | (January); once in each season)]                                | impact on ground water table due to mining activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|          | shall be carried out in                                         | Report of Ground water level and quality attached as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| xiii     | consultation with the State Ground Water Board/Central          | Annexure- X & XI respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | Ground Water Authority and the                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | data thus collected may be sent                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | regularly to the Ministry of                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Environment and Forests and its                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Regional Office Bhubaneswar, the                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | Central Ground Water Authority                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | and the Regional Director, Central Ground Water Board. If at    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | any stage, it is observed that the                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | groundwater table is getting                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | depleted due to the mining                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | activity; necessary corrective                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | measures shall be carried out.                                  | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | The project proponent shall regularly monitor the flow rate     | The flow rate of Damsala Nallah is being regularly monitored at both upstream and downstream on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| xiv      | of the natural water streams                                    | quarterly basis and record has maintained.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 7.1.4    | flowing adjacent to the mine                                    | The monitoring report of same attached as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | lease and maintain the records                                  | Annexure-XII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | The reclaimed and rehabilitated                                 | 41100 Sqm area of dump slope has been covered by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| XV       | area shall be afforested.                                       | Geotextile and 16550 Sqm area covered with grass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | Monitoring and management of rehabilitated areas shall continue | turffing & 78540 nos of saplings planted at dump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          | renabilitated areas shall continue                              | slope, roadside in side ML area since 2010-11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

|      | until the vegetation becomes                            | The details of the same are attached as Annexure-                                                         |
|------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
|      | self-sustaining. Compliance status                      | XIII.                                                                                                     |
|      | shall be submitted to the                               | Regular Monitoring and management of                                                                      |
|      | Ministry of Environment &                               | rehabilitated areas is being done. Six monthly report                                                     |
|      | Forests and its Regional Office                         | of the same is being submitted to respective                                                              |
|      | located at Bhubaneswar on six                           | authority regularly.                                                                                      |
|      | monthly basis                                           | Photo of Plantation, coirmatting & Grass turffing is                                                      |
|      | monthly basis                                           | given as <b>Annexure-XIV</b> .                                                                            |
|      |                                                         | given as Aimexure-Aiv.                                                                                    |
|      | Dimension of the retaining wall                         | Dimension of the retaining wall at the toe of                                                             |
|      | at the toe of temporary over                            | temporary over burden dumps and OB benches                                                                |
|      | burden dumps and OB benches                             | within the mine to check run-off and siltation are                                                        |
|      | within the mine to check run-off                        | based on the rain fall data.                                                                              |
| xvi  | and siltation shall be based on                         |                                                                                                           |
|      |                                                         | The details of the structures dump wise are attached as <b>Annexure XV</b> .                              |
|      | the rain fall data                                      |                                                                                                           |
|      |                                                         | photos showing retaining walls, Gabion wall                                                               |
|      | Diametra shall be refer to                              | attached as Annexure-XV.A                                                                                 |
|      | Plantation shall be raised in an                        | Year wise plantation programme is being undertaken                                                        |
|      | area of 36.156 Ha. including a                          | on dump slopes and safety zone area. The details of                                                       |
|      | 7.5m wide green belt in the                             | the plantation year wise is given as Annexure-XIII                                                        |
|      | safety zone around the mining                           | .The density of trees planted is around 3000 nos/ha.                                                      |
|      | lease, backfilled and reclaimed                         | Moreover, Our mines is located within cluster of                                                          |
|      | area, around the higher benches of excavated void to be | mines such as lease of Sukinda Chromite Mines of                                                          |
|      | converted in to water body,                             | M/s IMFA on the Eastern side, Jindal Chromite                                                             |
|      | roads etc. by planting the native                       | Mines of M/s Jindal Stainless Ltd (JSL) on                                                                |
|      | species in consultation with the                        | Western side, in south Ispat Sukinda Chromite Mine                                                        |
|      | local DFO/Agriculture                                   | of M/s Balasore Alloys Ltd exists respectively. As                                                        |
|      | Department. The density of the                          | per Para 4.7 of guidelines of F/CAct-1980, the Safety Zone of 7.5 m width all around the Lease boundaries |
|      | trees should be around 2500                             |                                                                                                           |
|      | plants per Ha.                                          | should be maintained. At Para 4.7 (ii) "which inter alia says that in case of cluster of mines, the outer |
|      | piants per ma.                                          | boundaries of cluster should be taken as Safety Zone                                                      |
| xvii |                                                         | & its maintenance cost has to be borne                                                                    |
|      |                                                         | proportionately by the Lessee operating the Cluster."                                                     |
|      |                                                         | In North side of ML area vacant area with tree                                                            |
|      |                                                         | growth is maintained as safety zone with 7.5 m                                                            |
|      |                                                         | width. In view of above, Plantation has been carried                                                      |
|      |                                                         | out over 0.17 ha of safety zone in the Northern side                                                      |
|      |                                                         | •                                                                                                         |
|      |                                                         | only, And joint mining joint mining has been carried                                                      |
|      |                                                         | out with M/s IMFA in Eastern side with due                                                                |
|      |                                                         | permission from IBM, DGMS,(Copy attached as                                                               |
|      |                                                         | Annexure XIII.A) Similar permission also granted for                                                      |
|      |                                                         | Join mining with M/s Jindal,(Copy attached as                                                             |
|      |                                                         | Annexure XIII.B) which is yet to start.                                                                   |
|      |                                                         | At present only one quarry is in operation, hence all                                                     |
|      |                                                         |                                                                                                           |
|      |                                                         | measures as per the condition will be undertaken at                                                       |

|                                                                                                                                                                                                                                                                                                                                                                                          | the cessation of the quarry operations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Effective safeguard measures such as regular water sprinkling shall be carried out in critical areas prone to air pollution and having high levels of SPM and RPM such as haul road, loading and unloading point and transfer points. It shall be ensured that the Ambient Air Quality parameters conform to the norms prescribed by the Central Pollution Control Board in this regard. | Regular water sprinkling is being done by deploying two no 20 KL mobile water tanker in critical areas prone to air pollution and having high levels of SPM & RPM such as loading and unloading point, transfer points, haul road & stack area etc. Fixed type of sprinklers also installed near COB plant to arrest the fugitive dust.  Ambient air quality monitoring is being done by establishing 6 ambient air monitoring stations in core and buffer zone of the lease area. The analysis result of all the parameters conforms to the norms prescribed by the Central Pollution Control Board. The monitoring data for the period October, 2017 to March, 2018 is attached as <b>Annexure-VIII</b> .                                                                                                                                                                                           |
| Process water discharge and/or any waste water shall be properly treated to meet the prescribed standards before reuse/discharge. The runoff from temporary OB dumps and other surface run off shall be analyzed for iron and in case its concentration is found higher than the permissible limit, the waste water should be treated before discharge/reuse.                            | Process water in COB plant is completely reused and the treated water from the ETP is used as make-up quantity. However the quantity of water dewatered from mine pit is properly treated through an up graded Effluent Treatment Plant of capacity 445KL/Hr established with the recommendation of IIT, Kharagpur. The treated water has been monitored regularly and meeting the prescribed standards before reuse/discharge.  Run off from OB dumps and other surface run-off are being analyzed on fortnightly basis during monsoon period at two different stations inside ML area with the analysis of the iron concentration in surface run-off. However channelization of all surface run-off water to ETP for proper treatment is made through settling pit and pumping arrangement.  Report of the surface runoff analysis of last monsoon (April-Septmber,2017) is attached as Annexure-IV |
| .The decanted water from the beneficiation plant and slime/tailing pond shall be re circulated within the mine and there shall be zero discharge                                                                                                                                                                                                                                         | Total decanted water from the beneficiation plant & tailing/slime pond is reused in COB plant; hence no discharge of decanted effluents from the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| from the mine.                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Status of compliance of conditions stipulated by MoEF in Environment Clearance no.- No. J-11015/139/2012-IA.II (M) dated 22.08.2014 of Kaliapani Chromite Mine of M/s Balasore Alloys Ltd as on 31.3.2018

|       | rate of the springs and perennial nallahs shall be carried out and records maintained.                                                                                                                                                                                                                                                                                                                | monitored and record has maintained. The flow rate in monsoon period is attached as <b>Annexure-XII</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xxii  | Regular monitoring of water quality, upstream and downstream of natural water bodies shall be carried out and record of monitoring data should be maintained and submitted to Ministry of Environment and Forests, its Regional Office, Bhubaneswar, Central Groundwater Authority, Regional Director, Central Ground Water Board, State Pollution Control Board and Central Pollution Control Board. | Monitoring of water quality, upstream and downstream of natural water bodies i.e Damsala Nallah is being carried out on quarterly basis and report submitted to Ministry of Environment and Forests & CC Regional Office, Bhubaneswar, Central Ground Water Board & State Pollution Control Board on regular basis.  The report of same attached Annexure-XVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| xxiii | Suitable rainwater harvesting measures on long term basis shall be planned and implemented in consultation with Regional Director, Central Ground Water Board.                                                                                                                                                                                                                                        | Two nos of he Roof Top rain water harvesting structure has been planned and one is being completed and another structure is ongoing. It is calculated to recharge at least 5,000 m3/year of water to be recharged to the underlain fractured aquifer through rooftop rain water harvesting structure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| xxiv  | Vehicular emissions shall be kept under control and regularly monitored. Measures shall be taken for maintenance of vehicles used in mining operations and in transportation of mineral from mine face to the beneficiation plant. The vehicles shall be covered with a tarpaulin and shall not be overloaded.                                                                                        | Periodical maintenance of the vehicles used in mining operations and in transportation of mineral from mine face to the beneficiation plant is being ensured. Regular monitoring of vehicular emission also being done. For outside trucks carrying mineral from mine to plant are ensured valid Pollution Under Control Certificate. The transporting trucks are being covered with tarpaulin and are allowed to take only the prescribed load i.e. below 10.5 Ton.  In order to air & soil by mineral transporting vehicles wheel washing facility is provided at at mine gate for washing the washing the wheels of transporting vehicle before leaving mines.  Copy of Vehicular emission report and photographs showing vehicles covered with tarpaulin & wheel washing systems installed at mines are attached Annexure-XVII & XVIII. |

| xxv    | Sewage treatment plant shall be installed for the colony. ETP shall also be provided for workshop and wastewater generated during mining operation.                                                                                                                                                                                                                                                         | We have no colony within the lease area. However for the treatment of the canteen waste water and organic waste STP of 40 KLD capacity is installed at site.  The workshop has been provided with Oil and grease pit for separation for oil and grease from waste water generated during vehicle washing and same has been channelized to ETP.  Waste water generating from mining operation also being channelized to ETP.  Photos of STP, O & G pit and ETP is attached Annexure: XIX                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xxvi   | Digital processing of the entire lease area using remote sensing technique shall be carried out regularly once in three years for monitoring land use pattern and report submitted to Ministry of Environment and Forests and its Regional Office, Bhubaneswar.                                                                                                                                             | Digital processing of the entire lease area using remote sensing technique is being carried out for monitoring land use pattern . The land use pattern of Mines is attached <b>Annexure-XX and</b> DGPS map is attached <b>as Annexure-XXI</b>                                                                                                                                                                                                                                                                                                                                                                  |
| xxvii  | Pre-placement medical examination and periodical medical examination of the workers engaged in the project shall be carried out and records maintained. For the purpose, schedule of health examination of the workers should be drawn and followed accordingly.                                                                                                                                            | Pre-placement medical examination and periodical medical examination of the workers engaged in the project is being carried out and records maintained. During 2016-17 IME done for 346 employees and 238 PME done.                                                                                                                                                                                                                                                                                                                                                                                             |
| xxviii | The project proponent shall take all precautionary measures during mining operation for conservation and protection of endangered fauna spotted in the study area. Action plan for conservation of flora and fauna shall be prepared and implemented in consultation with the State Forest and Wildlife Department. Necessary allocation of funds for implementation of the conservation plan shall be made | Site Specific Wildlife Conservation Plan has been prepared and approved by PCCF(WL) & Chief Wild Life warden ,Odisha Vide Memo 8478/1WL(C)-SSP-425/2014 Dated 7 <sup>th</sup> Nove-2014 and amount of Rs 1,89,36,000/- towards implementation of Site Specific Conservation Plan including cost of vehicle to be provided against demand note from DFO, Cuttack vide no 443 dated 21 <sup>st</sup> January,2015 has been deposited in favor of Ad-hoc Body of Compensatory Afforestation Fund Management and Planning Authority(CAMPA) through RTGS No.SBINR52170022300051075724059 ORISSA CAMPA on 23.02.2017. |

|      | be included in the project cost.  All the safeguard measures brought out in the Wildlife Conservation Pan so prepared specific to the project site shall                                                                                                                                             | Rs 64.82 lakh has been earmarked for carrying out Interventions inside ML area as per approved Site Specific Wildlife Conservation Plan. The proposed interventions have been carrying out and status being submitted to State Forest department.  The details of payments made attached as Annexure-XXII.                                                           |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| xxix | be submitted to the Ministry of                                                                                                                                                                                                                                                                      | Final Mine Closure Plan will be submitted to the ministry 5 years before the anticipated final mine closure.                                                                                                                                                                                                                                                         |
| xxx  |                                                                                                                                                                                                                                                                                                      | All the commitments made during public hearing are being undertaken by incorporating in the CSR activities. There was expenditure of Rs <b>4724507</b> incurred during period 2017-18 toward various activities under CSR.  The details of CSR activities during 2017-18 are attached as <b>Annexure-XXIV</b> .                                                      |
| i ii | Processing/Beneficiation technology and scope of working should be made without prior approval of the Ministry of Environment & Forests.  No change in the calendar plan including Processing/Beneficiation of mineral chrome ore and waste should be made                                           | project is both opencast & underground fully mechanized. There is/will be no change in Chrome Ore Processing/Beneficiation technology and scope of working shall be made without prior approval of the Ministry of Environment & Forests  No change in the calendar plan including Processing/Beneficiation of mineral chrome ore                                    |
| iii  | . At least four ambient air quality-monitoring stations should be established in the core zone as well as in the buffer zone for RSPM (Particulate matter with size less than 10 micron i.e., PM10) and NOX monitoring. Location of the stations should be decided based on the meteorological data, | PM10,PM2.5, SO <sub>2</sub> , NOx,CO,NH <sub>3</sub> &O <sub>3</sub> are being done by establishing 6 ambient air monitoring stations on the basis of meteorological data, topographical features after consultation with SPCB in the core & Buffer zone. The data so recorded is being regularly submitted to the Ministry including its Regional office located at |

|     | topographical features and environmentally and ecologically sensitive targets and frequency of monitoring should be undertaken in consultation with the State Pollution Control Board. The data so recorded should be regularly submitted to the Ministry including its Regional office located at Bhubaneswar and the State Pollution Control Board / Central Pollution Control Board once in six months. | Bhubaneswar and the State Pollution Control Board / Central Pollution Control Board once in six months.                                                                                                                                                                                                                                                                            |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| iv  | Measures should be taken for control of noise levels below 85 dBA in the work environment. Workers engaged in operations of HEMM, etc. should be provided with ear plugs / muffs.                                                                                                                                                                                                                          | Maintenance of all HeMM are being carried out on regular basis to suppress the Noise generation. Regular monitoring is being carried out for noise level in the work environment. Ear plugs / muffs are provided to all workers engaged in operations of HEMM etc.  Noise level monitoring results attached as Annexure-XXV.                                                       |
| v   | There will be zero waste water discharge from the plant.                                                                                                                                                                                                                                                                                                                                                   | Total decanted water from the beneficiation plant & tailing/slime pond is reused in COB plant; hence there is zero waste water discharge from the plant.                                                                                                                                                                                                                           |
| vi  | Personnel working in dusty areas should wear protective respiratory devices and they should also be provided with adequate training and information on safety and health aspects.                                                                                                                                                                                                                          | Personal protective equipments are being provided to all workers respective to the nature of the job. Initial and periodical awareness training is being imparted to all workers in the Company's Vocational Training Centre located within the lease area on Safety and Health Aspects.  Periodical health check up as per DGMS guideline is being carried out for all employees. |
| vii | Occupational health surveillance program of the workers should be undertaken periodically to observe any contractions due to exposure to dust and take corrective measures, if needed.                                                                                                                                                                                                                     | Pre-placement medical examination and periodical medical examination of the workers engaged in the project is being carried out and records maintained for corrective measures                                                                                                                                                                                                     |

| viii | A separate environmental management cell with suitable qualified personnel should be set-up under the control of a Senior Executive, who will report directly to the Head of the Organization.                                                                                        | A separate Environment management cell under the control of President (Mines) has been set up. Organizational Chart of Environmental Management Cell is given below    Vol. President   Andrew   Freet Strive state   Metager   Me |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ix   | The funds earmarked for environmental protection measures should be kept in separate account and should not be diverted for other purpose. Year wise expenditure should be reported to the Ministry and its Regional Office located at Bhubaneswar.                                   | Separate fund is being earmarked for environmental protection measures. Year wise Expenditure also been reported to Regional Office, MoEF, BBSR.  The detail of the expenditure is attached Annexure -XXVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| х    | The project authorities should inform to the Regional Office located at Bhubaneswar regarding date of financial closures and final approval of the project by the concerned authorities and the date of start of land development work.                                               | This is an ongoing project since Sept' 2000.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| хi   | The Regional Office of this Ministry located at Bhubaneswar shall monitor compliance of the stipulated conditions. The project authorities should extend full cooperation to the officer(s) of the Regional Office by furnishing the requisite data / information/monitoring reports. | We are abide by the condition and shall extend full cooperation to the officer(s) of regional office by furnishing the requisite data / information/monitoring reports during their monitoring of compliance of the stipulated conditions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| xii  | The project proponent shall submit six monthly reports on the status of compliance of the stipulated                                                                                                                                                                                  | Six monthly compliance report is being submitted on the status of compliance of the stipulated environmental clearance conditions including                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

| ••••• |                                       |                                                       |
|-------|---------------------------------------|-------------------------------------------------------|
|       | environmental clearance               | results of monitored data (both in hard copies as     |
|       | conditions including results of       | well as by e-mail) to the Ministry of Environment     |
|       | monitored data (both in hard copies   | and Forests, its Regional Office Bhubaneswar, the     |
|       | as well as by e-mail) to the Ministry | respective Zonal Office of Central Pollution          |
|       | of Environment and Forests, its       | Control Board and the State Pollution Control         |
|       | Regional Office Bhubaneswar, the      |                                                       |
|       |                                       | Board. The status of compliance of the                |
|       | respective Zonal Office of Central    | environmental clearance conditions, including         |
|       | Pollution Control Board and the       | results of monitored data is uploaded on              |
|       | State Pollution Control Board. The    | company website periodically.                         |
|       | proponent shall upload the status     |                                                       |
|       | of compliance of the                  |                                                       |
|       | environmental clearance               |                                                       |
|       | conditions, including results of      |                                                       |
|       | monitored data on their website       |                                                       |
|       | and shall update the same             |                                                       |
|       | periodically. It shall simultaneously |                                                       |
|       | be sent to the Regional Office of     |                                                       |
|       | _                                     |                                                       |
|       | the Ministry of Environment and       |                                                       |
|       | Forests, Bhubaneswar, the             |                                                       |
|       | respective Zonal Officer of Central   |                                                       |
|       | Pollution Control Board and the       |                                                       |
|       | State Pollution Control Board.        |                                                       |
|       | A copy of the clearance letter        | Copy of the clearance letter has been sent to         |
|       | shall be sent by the proponent to     | concerned Panchayat. The clearance letter also        |
|       | concerned Panchayat, Zila             | been uploaded on the website of the Company.          |
|       | Parisad/ Municipal Corporation,       | The URL for the same is                               |
|       | Urban Local Body and the Local        | http://www.balasorealloys.com/webpage.php?t           |
| xiii  | NGO, if any, from whom                | · ·                                                   |
| 7     | suggestions/ representations, if any, | itle=Environment+Policy&p_type=1&parent=36&           |
|       | were received while processing the    | <u>catid=78</u> .                                     |
|       | _                                     |                                                       |
|       | proposal. The clearance letter shall  |                                                       |
|       | also be put on the website of the     |                                                       |
|       | Company by the proponent.             |                                                       |
|       | The State Pollution Control Board     |                                                       |
|       | should display a copy of the          | Agreed.                                               |
| xiv   | clearance letter at the Regional      |                                                       |
| XIV   | office, District Industry Centre and  |                                                       |
|       | the Collector's office/ Tehsildar's   |                                                       |
|       | Office for 30 days.                   |                                                       |
|       | The environmental statement for       | The environmental statement for each financial        |
|       | each financial year ending 31st       | year ending 31 <sup>st</sup> March in Form-V is being |
|       | March in Form-V as is mandated to     |                                                       |
|       |                                       | submitted to the concerned State Pollution            |
|       | be submitted by the project           | Control Board as prescribed under the                 |
| ΧV    | proponent to the concerned State      | Environment (Protection) Rules, 1986, as              |
|       | Pollution Control Board as            | amended subsequently, also uploaded on the            |
|       | prescribed under the Environment      | website of the company along with the status of       |
|       | (Protection) Rules, 1986, as          | compliance of environmental clearance                 |
|       | amended subsequently, shall also      | conditions and also sent to the respective            |
|       |                                       | conditions and also sent to the respective            |

Status of compliance of conditions stipulated by MoEF in Environment Clearance no.- No. J-11015/139/2012-IA.II (M) dated 22.08.2014 of Kaliapani Chromite Mine of M/s Balasore Alloys Ltd as on 31.3.2018

be put on the website of the company along with the status of compliance of environmental clearance conditions and shall also be sent to the respective Regional Office of the Ministry of Environment and Forests, Bhubaneswar by e-mail.

Regional Office of the Ministry of Environment and Forests, Bhubaneswar by e-mail. The copy of the last environmental statement for financial year ending 31<sup>st</sup> March 2016-17 is attached as **Annexure-XXVII.** 

project authorities should advertise at least in two local newspapers of the District or State in which the project is located and widely circulated, one of which shall be in the vernacular language of the locality concerned, within 7 days of the issue of the clearance letter informing that the project has been accorded environmental clearance and a copy of the clearance letter is available with the State Pollution Control Board and also at web site of the Ministry of Environment and Forests at http://envfor.nic.in and a copy of the same should be forwarded to the Regional Office of this Ministry located at Bhubaneswar.

The clearance letter informing that the project has been accorded environmental clearance is advertised in "The Sambad" (Odia daily) & The Pioneer (English daily) newspaper.

xvi

## **LIST OF ANNEXURES**

#### **ANNEXU**

| RE NO  | D DETAILS                                                           |
|--------|---------------------------------------------------------------------|
| I.     | CGWA RECOMENDATION                                                  |
| II.    | ETP REPORT OCT,17 TO MARCH,18                                       |
| III.   | DRINKING WATER QULAITY FOR CR+6                                     |
| IV.    | SURFACE RUN OFF ANALYSIS REPORT                                     |
| V.     | COPY OF CTE                                                         |
| VI.    | COPY OF CTO                                                         |
| VII.   | TRAFFIC DENSITY STUDY REPORT                                        |
| VIII.  | AAQ ANALYSIS REPORT                                                 |
| IX.    | PHOTOS SHOWING DUST SUPRESSION ARRANGEMNETS                         |
| Χ.     | GROUND WATER LEVEL MONITORING REPORT                                |
| XI.    | GROUND WATER QUALITY ANALYSIS REPORT                                |
| XII.   | FLOW RATE MONITORING REPORT OF DAMSALANALA                          |
| XIII.  | INSIDE ML AREA PLANATION DETAILS                                    |
| XIII.A | : CBD/CBM PERMISSIONS WITH M/S IMFA                                 |
| XIII.B | CBD/CBM PERMSSIONS WITHM/S JINDAL                                   |
| XIV.   | PHOTOS SHOWING PLANATION, COIRMATTING ETC INSIDE ML AREA            |
| XV.    | DETAILS OF GARLAND DRAIN, RETAINING WALL                            |
| XVI.   | PHOTOS SHOWING GABION WALL AND RETAINING WALL CONSTRUCTED AT MINES  |
| XVII.  | SURFACE WATER QUALITY ANALYSIS REPROT                               |
| XVIII. | VEHICULAR EMISSION ANALYSIS REPORT                                  |
| XIX.   | PHOTOS SHOWNG TRUCKS COVERED WITH TARPAULINE & WHEEL WASHING SYSTEM |
|        | AT MINES                                                            |
| XX.    | PHOTOS SHOWING ETP,STP, AND OIL AND GREASE PIT                      |
| XXI.   | LAND USE PATTREN OF MINES                                           |

XXII. LAND USE MAP

XXIII. PAYMNET DETAILS OF WLMP/WLCP

XXIV. DETAILS OF CSR ACTVITIES OCT,17 TO MARCH,18

XXV. NOISE LEVEL MONITORING REPORT

XXVI. ENVIRONMNETAL EXPENDITURE

XXVII. COPY OF ENVIORNMENTAL STATEMENT

No. 5-22/SER/CGWA/2017-18 — 3 4 9
Govt of India
Ministry of Water Resources, RD & GR
Central Ground Water Board
South Eastern Region
Bhujal Bhawan
NH — V. Khandagin
Bhubaneswar — 751030

Date: 28.03.2018

The Member Secretary
Central Ground Water Authority
Ministry of Water Resources, RD & GR
18/11, Jamnagar House, Mansingh Road

New Delhi-110 011

Sub: Forwarding of application for renewal of CGWA NOC in respect of Kaliapani Chromite Mines of M/s

Balasore Alloys Limited, Village: Kaliapani, Block: Sukinda; Dist.: Jajpur, State: Odisha

Ref: 1 CGWA NOC granted to Kaliapani Chromite Mines of M/s Balasore Alloys Limited – vide CHQ letter No.21-4/819/OR/MIN/2015-1835 Dated: - 10.12.2015

Renewal Application submitted by the firm vide letter dated 07.12.2017

Sir.

Please find enclosed an application submitted, in respect of in respect of Kaliapani Chromite Mines of M/s Balasore Alloys Limited, Village: Kaliapani, Block: Sukinda; Dist.: Jajpur, State: Odisha seeking renewal of CGWA NOC for industrial use along with a Comprehensive Compliance Report and other relevant documents.

The evaluation report duly filled in as per the prescribed "EVALUATION PROFORMA FOR RENEWAL OF NOC IN RESPECT OF INDUSTRY" along with comments & relevant hydrographs, water level data etc. of the area necessary action please.

Encl:

 (a) Original renewal Application form, Comprehensive Compliance Report & other relevant Documents etc. submitted by Kaliapani Chromite Mines of M/s Balasore Alloys Limited,
 (b) Industry Inspection Report

Yours faithfully,

(Dr. U. Gogoi)

Copy to:

1 The Sr. Vice President(Corporate Affairs), M/s Balasore Alloys Limited, At/PO Kaliapani, Tehsil) Sukinda,

District: Jajpur, Odisha - 755047

2) Guard File

(Dr. U. Gogoi) Regional Director

Plant: Kaliapani Chromite mines of M/s Balasore Alloys Ltd. (Chromite), Jajpur, 755047 Created Date: Tue Apr 10 11:48:53 IST 2018

Station Id. EQMS-1 EQMS-2 Location
INLET STATION
OUTLET STATION

| OUTLET STATION  Day | Station Id. | Cr6+ (in mg/l)                         | FLOW (in m3/h)                              | PH (in ph)                             | TSS (in mg/l)                                |
|---------------------|-------------|----------------------------------------|---------------------------------------------|----------------------------------------|----------------------------------------------|
| 22/01/2018          | EQMS-1      | Avg: 1.397                             | N/A                                         | Avg: 8.129                             | Avg: 71.603                                  |
| 22, 01, 2010        |             | Min: 0.750<br>Max: 1.886               | 11/11                                       | Min: 8.105<br>Max: 8.167               | Min: 68.906<br>Max: 74.812                   |
| 23/01/2018          | EQMS-1      | Avg: 1.384<br>Min: 0.815<br>Max: 2.364 | N/A                                         | Avg: 8.156<br>Min: 8.122<br>Max: 8.197 | Avg: 71.690<br>Min: 68.906<br>Max: 74.594    |
| 24/01/2018          | EQMS-1      | Avg: 1.425<br>Min: 0.542<br>Max: 2.280 | N/A                                         | Avg: 8.162<br>Min: 8.109<br>Max: 8.207 | Avg: 72.024<br>Min: 68.906<br>Max: 74.812    |
| 25/01/2018          | EQMS-1      | Avg: 1.336<br>Min: 0.406<br>Max: 1.975 | Avg: 96.802<br>Min: 1.350<br>Max: 247.500   | Avg: 8.154<br>Min: 8.119<br>Max: 8.199 | Avg: 72.107<br>Min: 69.344<br>Max: 75.250    |
| 26/01/2018          | EQMS-1      | Avg: 1.383<br>Min: 0.664<br>Max: 2.042 | Avg: 119.450<br>Min: 6.450<br>Max: 289.650  | Avg: 8.186<br>Min: 8.142<br>Max: 8.220 | Avg: 72.460<br>Min: 70.219<br>Max: 75.906    |
| 27/01/2018          | EQMS-1      | Avg: 1.268<br>Min: 0.496<br>Max: 2.028 | Avg: 83.967<br>Min: 1.350<br>Max: 246.900   | Avg: 8.192<br>Min: 8.137<br>Max: 8.250 | Avg: 72.037<br>Min: 68.250<br>Max: 75.250    |
| 28/01/2018          | EQMS-1      | Avg: 1.490<br>Min: 0.965<br>Max: 2.090 | Avg: 110.163<br>Min: 1.200<br>Max: 234.300  | Avg: 8.232<br>Min: 8.183<br>Max: 8.264 | Avg: 72.107<br>Min: 68.906<br>Max: 74.594    |
| 29/01/2018          | EQMS-1      | Avg: 1.299<br>Min: 0.688<br>Max: 1.837 | Avg: 102.415<br>Min: 1.200<br>Max: 235.050  | Avg: 8.199<br>Min: 8.166<br>Max: 8.259 | Avg: 72.148<br>Min: 68.031<br>Max: 75.031    |
| 30/01/2018          | EQMS-1      | Avg: 1.300<br>Min: 0.453<br>Max: 2.100 | Avg: 95.809<br>Min: 1.200<br>Max: 236.700   | Avg: 8.207<br>Min: 8.153<br>Max: 8.259 | Avg: 72.275<br>Min: 69.344<br>Max: 75.906    |
| 31/01/2018          | EQMS-1      | Avg: 1.154<br>Min: 0.476<br>Max: 1.896 | Avg: 134.234<br>Min: 1.200<br>Max: 233.100  | Avg: 8.195<br>Min: 8.157<br>Max: 8.267 | Avg: 72.312<br>Min: 68.906<br>Max: 76.344    |
| 01/02/2018          | EQMS-1      | Avg: 1.204<br>Min: 0.495<br>Max: 2.081 | Avg: 198.346<br>Min: 1.350<br>Max: 256.650  | Avg: 8.211<br>Min: 8.170<br>Max: 8.264 | Avg: 72.441<br>Min: 68.469<br>Max: 76.125    |
| 02/02/2018          | EQMS-1      | Avg: 1.228<br>Min: 0.492<br>Max: 1.950 | Avg: 152.729<br>Min: 1.200<br>Max: 219.300  | Avg: 8.231<br>Min: 8.177<br>Max: 8.282 | Avg: 72.485<br>Min: 68.031<br>Max: 77.000    |
| 03/02/2018          | EQMS-1      | Avg: 1.068<br>Min: 0.345<br>Max: 1.745 | Avg: 154.273<br>Min: 1.200<br>Max: 224.400  | Avg: 8.233<br>Min: 8.180<br>Max: 8.278 | Avg: 72.349<br>Min: 68.031<br>Max: 77.000    |
| 04/02/2018          | EQMS-1      | Avg: 1.044<br>Min: 0.211<br>Max: 1.793 | Avg: 198.636<br>Min: 1.350<br>Max: 217.950  | Avg: 8.237<br>Min: 8.177<br>Max: 8.287 | Avg: 72.483<br>Min: 68.906<br>Max: 77.000    |
| 05/02/2018          | EQMS-1      | Avg: 0.759<br>Min: 0.003<br>Max: 1.414 | Avg: 158.728<br>Min: 1.350<br>Max: 244.500  | Avg: 8.163<br>Min: 8.055<br>Max: 8.287 | Avg: 79.369<br>Min: 69.125<br>Max: 106.312   |
| 06/02/2018          | EQMS-1      | Avg: 0.817<br>Min: 0.124<br>Max: 1.471 | Avg: 139.225<br>Min: 15.900<br>Max: 244.500 | Avg: 8.138<br>Min: 8.096<br>Max: 8.184 | Avg: 76.762<br>Min: 70.219<br>Max: 82.688    |
| 07/02/2018          | EQMS-1      | Avg: 0.777<br>Min: 0.199<br>Max: 1.548 | Avg: 151.311<br>Min: 7.650<br>Max: 232.500  | Avg: 8.169<br>Min: 8.129<br>Max: 8.212 | Avg: 75.071<br>Min: 70.656<br>Max: 79.406    |
| 08/02/2018          | EQMS-1      | Avg: 0.958<br>Min: 0.003<br>Max: 4.702 | Avg: 129.099<br>Min: 1.350<br>Max: 394.950  | Avg: 8.045<br>Min: 7.090<br>Max: 8.231 | Avg: 81.183<br>Min: 68.469<br>Max: 133.438   |
| 09/02/2018          | EQMS-1      | Avg: 1.389<br>Min: 0.822<br>Max: 2.006 | Avg: 166.462<br>Min: 1.350<br>Max: 502.050  | Avg: 7.972<br>Min: 7.915<br>Max: 8.060 | Avg: 75.475<br>Min: 70.219<br>Max: 91.656    |
| 10/02/2018          | EQMS-1      | Avg: 1.306<br>Min: 0.817<br>Max: 1.864 | Avg: 158.200<br>Min: 1.350<br>Max: 305.400  | Avg: 8.028<br>Min: 7.989<br>Max: 8.066 | Avg: 71.763<br>Min: 69.344<br>Max: 74.812    |
| 11/02/2018          | EQMS-1      | Avg: 1.358<br>Min: 0.785<br>Max: 1.892 | Avg: 114.633<br>Min: 1.350<br>Max: 345.600  | Avg: 8.099<br>Min: 8.065<br>Max: 8.149 | Avg: 70.229<br>Min: 68.031<br>Max: 72.625    |
| 12/02/2018          | EQMS-1      | Avg: 1.222<br>Min: 0.708<br>Max: 1.847 | Avg: 119.239<br>Min: 1.500<br>Max: 412.500  | Avg: 8.077<br>Min: 7.772<br>Max: 8.176 | Avg: 72.963<br>Min: 68.031<br>Max: 87.719    |
| 13/02/2018          | EQMS-1      | Avg: 1.198<br>Min: 0.660<br>Max: 4.549 | Avg: 107.378<br>Min: 1.200<br>Max: 343.800  | Avg: 7.478<br>Min: 6.959<br>Max: 7.962 | Avg: 93.110<br>Min: 75.906<br>Max: 126.875   |
| 14/02/2018          | EQMS-1      | Avg: 1.046<br>Min: 0.617<br>Max: 1.537 | Avg: 95.255<br>Min: 1.350<br>Max: 367.800   | Avg: 7.340<br>Min: 7.139<br>Max: 7.646 | Avg: 97.058<br>Min: 88.375<br>Max: 100.625   |
| 15/02/2018          | EQMS-1      | Avg: 1.057<br>Min: 0.582<br>Max: 1.583 | Avg: 126.629<br>Min: 1.200<br>Max: 314.100  | Avg: 7.734<br>Min: 7.528<br>Max: 7.825 | Avg: 99.555<br>Min: 95.812<br>Max: 103.250   |
| 16/02/2018          | EQMS-1      | Avg: 1.143<br>Min: 0.656<br>Max: 1.589 | Avg: 244.682<br>Min: 1.500<br>Max: 475.800  | Avg: 7.892<br>Min: 7.825<br>Max: 7.940 | Avg: 103.660<br>Min: 99.531<br>Max: 108.500  |
| 17/02/2018          | EQMS-1      | Avg: 0.894<br>Min: 0.175<br>Max: 1.724 | Avg: 150.055<br>Min: 1.200<br>Max: 478.350  | Avg: 7.966<br>Min: 7.928<br>Max: 8.013 | Avg: 106.890<br>Min: 101.500<br>Max: 112.000 |
| 18/02/2018          | EQMS-1      | Avg: 0.749<br>Min: 0.065<br>Max: 1.345 | Avg: 38.610<br>Min: 1.200<br>Max: 395.100   | Avg: 8.011<br>Min: 7.952<br>Max: 8.048 | Avg: 109.709<br>Min: 106.094<br>Max: 112.656 |



Salasore Alloys Ltd. (Chromite),Jajpur,/5504/ Created Date: Tue Apr 10 11:48:53 IST 2018

| Day          | Station Id. | Cr6+ (in mg/l)           | FLOW (in m3/h)               | PH (in ph)               | TSS (in mg/l)                |
|--------------|-------------|--------------------------|------------------------------|--------------------------|------------------------------|
| 19/02/2018   | EQMS-1      | Avg: 0.499<br>Min: 0.002 | Avg: 71.636<br>Min: 1.350    | Avg: 7.952<br>Min: 7.876 | Avg: 113.986<br>Min: 106.312 |
|              |             | Max: 1.318               | Max: 429.000                 | Max: 8.068               | Max: 131.250                 |
| 20/02/2018   | EQMS-1      | Avg: 0.398               | Avg: 113.853                 | Avg: 8.001               | Avg: 102.820                 |
|              |             | Min: 0.003<br>Max: 1.060 | Min: 1.350<br>Max: 294.000   | Min: 7.952<br>Max: 8.038 | Min: 98.438<br>Max: 108.500  |
| 21/02/2018   | EQMS-1      | Avg: 0.306               | Avg: 81.475                  | Avg: 8.062               | Avg: 100.138                 |
|              |             | Min: 0.002<br>Max: 1.031 | Min: 1.350<br>Max: 315.300   | Min: 8.026<br>Max: 8.102 | Min: 96.469<br>Max: 103.688  |
| 22/02/2018   | EQMS-1      | Avg: 0.474               | Avg: 102.530                 | Avg: 8.104               | Avg: 99.284                  |
|              |             | Min: 0.014<br>Max: 0.976 | Min: 1.350<br>Max: 325.350   | Min: 8.057<br>Max: 8.148 | Min: 94.500<br>Max: 103.250  |
| 23/02/2018   | EQMS-1      | Avg: 0.482               | Avg: 141.082                 | Avg: 8.127               | Avg: 99.359                  |
| 20, 02, 2020 |             | Min: 0.064               | Min: 1.500                   | Min: 8.078               | Min: 94.938                  |
| 04 /00 /0010 | DOME 1      | Max: 0.894               | Max: 355.500                 | Max: 8.176               | Max: 103.688                 |
| 24/02/2018   | EQMS-1      | Avg: 0.342<br>Min: 0.001 | Avg: 131.878<br>Min: 1.350   | Avg: 8.129<br>Min: 8.084 | Avg: 98.508<br>Min: 94.500   |
|              |             | Max: 0.792               | Max: 419.100                 | Max: 8.195               | Max: 104.125                 |
| 25/02/2018   | EQMS-1      | Avg: 0.309<br>Min: 0.002 | Avg: 236.070<br>Min: 1.350   | Avg: 8.162<br>Min: 8.105 | Avg: 98.890<br>Min: 95.375   |
|              |             | Max: 0.808               | Max: 357.300                 | Max: 8.204               | Max: 101.938                 |
| 26/02/2018   | EQMS-1      | Avg: 0.170               | Avg: 167.394                 | Avg: 8.175               | Avg: 98.326                  |
|              |             | Min: 0.000<br>Max: 0.654 | Min: 1.350<br>Max: 351.450   | Min: 8.133<br>Max: 8.235 | Min: 93.625<br>Max: 104.344  |
| 27/02/2018   | EQMS-1      | Avg: 0.225               | Avg: 119.854                 | Avg: 8.208               | Avg: 98.511                  |
|              |             | Min: 0.000<br>Max: 0.623 | Min: 1.500<br>Max: 371.700   | Min: 8.136<br>Max: 8.268 | Min: 92.969<br>Max: 101.938  |
| 28/02/2018   | EQMS-1      | Avg: 0.559               | Avg: 199.472                 | Avg: 7.432               | Avg: 156.047                 |
| 20, 02, 2020 |             | Min: 0.003               | Min: 1.350                   | Min: 6.927               | Min: 95.156                  |
| 01 /02 /0010 | DOME 1      | Max: 1.555               | Max: 416.400                 | Max: 8.224               | Max: 298.156                 |
| 01/03/2018   | EQMS-1      | Avg: 1.370<br>Min: 0.075 | Avg: 94.397<br>Min: 1.350    | Avg: 7.498<br>Min: 7.111 | Avg: 149.332<br>Min: 98.656  |
|              |             | Max: 2.298               | Max: 501.600                 | Max: 7.717               | Max: 209.781                 |
| 02/03/2018   | EQMS-1      | Avg: 2.190<br>Min: 1.440 | Avg: 138.268<br>Min: 1.350   | Avg: 7.854<br>Min: 7.716 | Avg: 101.517<br>Min: 96.688  |
|              |             | Max: 2.831               | Max: 386.250                 | Max: 7.947               | Max: 136.500                 |
| 03/03/2018   | EQMS-1      | Avg: 1.939<br>Min: 1.026 | Avg: 118.702<br>Min: 1.350   | Avg: 7.955<br>Min: 7.775 | Avg: 103.532<br>Min: 96.250  |
|              |             | Max: 2.647               | Max: 337.050                 | Max: 8.041               | Max: 115.062                 |
| 04/03/2018   | EQMS-1      | Avg: 1.891               | Avg: 44.172                  | Avg: 7.987               | Avg: 97.387                  |
|              |             | Min: 1.099<br>Max: 2.604 | Min: 1.350<br>Max: 296.250   | Min: 7.913<br>Max: 8.051 | Min: 91.656<br>Max: 103.031  |
| 05/03/2018   | EQMS-1      | Avg: 2.040               | Avg: 151.627                 | Avg: 8.100               | Avg: 94.884                  |
|              |             | Min: 1.450<br>Max: 2.691 | Min: 1.350<br>Max: 426.750   | Min: 8.048<br>Max: 8.162 | Min: 91.219<br>Max: 98.656   |
| 06/03/2018   | EQMS-1      | Avg: 1.968               | Avg: 134.003                 | Avg: 8.161               | Avg: 94.894                  |
| 00,00,2020   |             | Min: 1.338               | Min: 1.350                   | Min: 8.087               | Min: 91.000                  |
| 07/03/2018   | FOMC 1      | Max: 2.517               | Max: 340.350<br>Avg: 97.196  | Max: 8.229<br>Avg: 7.747 | Max: 99.094<br>Avg: 78.557   |
| 07/03/2018   | EQMS-1      | Avg: 2.025<br>Min: 0.797 | Min: 1.350                   | Min: 7.364               | Min: 62.562                  |
| 20 /22 /22 2 |             | Max: 3.946               | Max: 494.250                 | Max: 8.282               | Max: 188.781                 |
| 08/03/2018   | EQMS-1      | Avg: 2.139<br>Min: 1.655 | Avg: 125.643<br>Min: 1.350   | Avg: 7.766<br>Min: 7.598 | Avg: 64.661<br>Min: 59.062   |
|              |             | Max: 2.813               | Max: 459.900                 | Max: 7.878               | Max: 68.688                  |
| 09/03/2018   | EQMS-1      | Avg: 2.112<br>Min: 1.490 | Avg: 131.037<br>Min: 1.350   | Avg: 7.927<br>Min: 7.830 | Avg: 66.102<br>Min: 60.594   |
|              |             | Max: 2.698               | Max: 501.600                 | Max: 7.984               | Max: 74.594                  |
| 10/03/2018   | EQMS-1      | Avg: 2.254<br>Min: 1.731 | Avg: 193.083<br>Min: 1.350   | Avg: 7.911<br>Min: 7.787 | Avg: 70.044<br>Min: 64.750   |
|              |             | Max: 2.709               | Max: 458.550                 | Max: 8.028               | Max: 77.438                  |
| 11/03/2018   | EQMS-1      | Avg: 2.311               | Avg: 156.717                 | Avg: 7.951<br>Min: 7.872 | Avg: 72.914                  |
|              |             | Min: 1.490<br>Max: 2.770 | Min: 1.350<br>Max: 408.600   | Max: 8.011               | Min: 68.031<br>Max: 82.469   |
| 12/03/2018   | EQMS-1      | Avg: 2.264               | Avg: 154.286                 | Avg: 7.949               | Avg: 76.599                  |
|              |             | Min: 1.561<br>Max: 2.900 | Min: 1.350<br>Max: 345.000   | Min: 7.878<br>Max: 8.032 | Min: 70.438<br>Max: 84.656   |
| 13/03/2018   | EQMS-1      | Avg: 2.243               | Avg: 228.612                 | Avg: 7.934               | Avg: 82.714                  |
|              |             | Min: 1.321<br>Max: 2.931 | Min: 9.900<br>Max: 450.900   | Min: 7.668<br>Max: 8.064 | Min: 69.562<br>Max: 112.656  |
| 14/03/2018   | EQMS-1      | Avg: 1.069               | Avg: 178.062                 | Avg: 7.386               | Avg: 179.327                 |
|              |             | Min: 0.001               | Min: 1.800                   | Min: 7.108               | Min: 84.000                  |
| 15/03/2018   | EQMS-1      | Max: 2.510<br>Avg: 0.828 | Max: 454.050<br>Avg: 184.174 | Max: 7.969<br>Avg: 7.396 | Max: 345.406<br>Avg: 322.927 |
| 137 037 2010 | Lyns I      | Min: 0.001               | Min: 1.350                   | Min: 7.078               | Min: 54.250                  |
| 16/03/2019   | FOME 1      | Max: 2.254               | Max: 471.000                 | Max: 7.745               | Max: 734.344                 |
| 16/03/2018   | EQMS-1      | Avg: 1.079<br>Min: 0.527 | Avg: 186.143<br>Min: 1.500   | Avg: 7.870<br>Min: 7.740 | Avg: 107.710<br>Min: 87.500  |
|              |             | Max: 1.524               | Max: 501.900                 | Max: 7.959               | Max: 115.719                 |
| 17/03/2018   | EQMS-1      | Avg: 1.219<br>Min: 0.444 | Avg: 152.988<br>Min: 1.500   | Avg: 7.798<br>Min: 7.562 | Avg: 77.797<br>Min: 58.406   |
|              |             | Max: 1.962               | Max: 331.050                 | Max: 8.010               | Max: 101.062                 |
| 18/03/2018   | EQMS-1      | Avg: 1.860<br>Min: 1.329 | Avg: 196.148<br>Min: 1.500   | Avg: 7.914<br>Min: 7.848 | Avg: 55.977<br>Min: 50.531   |
|              |             | Max: 2.412               | Max: 330.750                 | Max: 7.969               | Max: 62.781                  |
| 19/03/2018   | EQMS-1      | Avg: 1.514               | Avg: 184.237                 | Avg: 7.790               | Avg: 64.252                  |
|              |             | Min: 0.685<br>Max: 2.321 | Min: 1.500<br>Max: 502.500   | Min: 7.667<br>Max: 8.028 | Min: 50.313<br>Max: 93.625   |
| 20/03/2018   | EQMS-1      | Avg: 1.644               | Avg: 150.159                 | Avg: 7.729               | Avg: 67.627                  |
|              |             | Min: 0.929<br>Max: 2.350 | Min: 1.500<br>Max: 348.600   | Min: 7.556<br>Max: 7.926 | Min: 54.031<br>Max: 91.656   |
|              | 1           | 1                        | 1                            | 1                        |                              |



Created Date: Tue Apr 10 11:48:53 IST 2018

| Day          | Station Id. | Cr6+ (in mg/l)           | FLOW (in m3/h)               | PH (in ph)               | TSS (in mg/l)               |
|--------------|-------------|--------------------------|------------------------------|--------------------------|-----------------------------|
| 21/03/2018   | EQMS-1      | Avg: 1.245               | Avg: 174.146                 | Avg: 7.753               | Avg: 84.215                 |
| 21/03/2016   | EQMS-1      | Min: 0.002               | Min: 1.350                   | Min: 7.676               | Min: 64.312                 |
|              |             | Max: 2.268               | Max: 332.400                 | Max: 7.859               | Max: 186.594                |
| 22/03/2018   | EQMS-1      | Avg: 1.326               | Avg: 148.166                 | Avg: 7.872               | Avg: 79.574                 |
|              |             | Min: 0.630<br>Max: 2.012 | Min: 1.650<br>Max: 496.050   | Min: 7.750<br>Max: 7.950 | Min: 73.938<br>Max: 89.031  |
| 23/03/2018   | EOMS-1      | Avg: 0.991               | Avg: 170.119                 | Avg: 7.853               | Avg: 91.697                 |
| 23/03/2016   | FOWS-I      | Min: 0.205               | Min: 1.650                   | Min: 7.774               | Min: 76.344                 |
|              |             | Max: 1.894               | Max: 353.700                 | Max: 8.002               | Max: 104.781                |
| 24/03/2018   | EQMS-1      | Avg: 0.913               | Avg: 135.570                 | Avg: 7.897               | Avg: 89.971                 |
|              |             | Min: 0.142               | Min: 1.500                   | Min: 7.832               | Min: 78.094                 |
|              |             | Max: 1.635               | Max: 311.700                 | Max: 8.013               | Max: 134.969                |
| 25/03/2018   | EQMS-1      | Avg: 1.082<br>Min: 0.395 | Avg: 197.679<br>Min: 1.500   | Avg: 7.927<br>Min: 7.870 | Avg: 83.958<br>Min: 77.656  |
|              |             | Max: 1.668               | Max: 323.400                 | Max: 7.991               | Max: 139.562                |
| 26/03/2018   | EQMS-1      | Avg: 0.918               | Avg: 104.563                 | Avg: 7.921               | Avg: 83.785                 |
|              | ~           | Min: 0.326               | Min: 1.500                   | Min: 7.884               | Min: 78.531                 |
|              |             | Max: 1.375               | Max: 304.500                 | Max: 7.962               | Max: 89.250                 |
| 01/10/2017   | EQMS-2      | Avg: 0.011               | Avg: 259.608                 | Avg: 6.931               | Avg: 47.271                 |
|              |             | Min: 0.001<br>Max: 0.024 | Min: 24.438<br>Max: 364.525  | Min: 6.850<br>Max: 7.049 | Min: 32.344<br>Max: 158.781 |
| 02/10/2017   | EQMS-2      | Avg: 0.012               | Avg: 231.948                 | Avg: 6.894               | Avg: 34.412                 |
| 02,10,201,   | Lights L    | Min: 0.004               | Min: 15.775                  | Min: 6.880               | Min: 33.219                 |
|              |             | Max: 0.018               | Max: 299.950                 | Max: 6.918               | Max: 35.625                 |
| 03/10/2017   | EQMS-2      | Avg: 0.012               | Avg: 264.423                 | Avg: 6.961               | Avg: 34.416                 |
|              |             | Min: 0.002<br>Max: 0.022 | Min: 1.262<br>Max: 356.538   | Min: 6.880<br>Max: 7.017 | Min: 33.219<br>Max: 35.625  |
| 04/10/2017   | FOMS-2      | Avg: 0.010               | Avg: 277.482                 | Avg: 7.165               | Avg: 34.457                 |
| 04/10/2017   | EQMS-2      | Avg: 0.010<br>Min: 0.001 | Avg: 277.482<br>Min: 1.375   | Avg: 7.165<br>Min: 6.998 | Avg: 34.457<br>Min: 33.219  |
|              | 1           | Max: 0.018               | Max: 353.275                 | Max: 7.323               | Max: 35.625                 |
| 05/10/2017   | EQMS-2      | Avg: 0.010               | Avg: 213.181                 | Avg: 7.211               | Avg: 48.199                 |
|              |             | Min: 0.000<br>Max: 0.016 | Min: 16.338<br>Max: 301.637  | Min: 7.128<br>Max: 7.362 | Min: 32.125<br>Max: 159.875 |
| 06/10/2017   | EQMS-2      | Avg: 0.014               | Avg: 287.858                 | Avg: 7.159               | Avg: 33.684                 |
| 00/10/2017   | EQMS-2      | Min: 0.008               | Min: 16.900                  | Min: 7.128               | Min: 32.125                 |
|              |             | Max: 0.018               | Max: 358.225                 | Max: 7.193               | Max: 34.750                 |
| 07/10/2017   | EQMS-2      | Avg: 0.010               | Avg: 249.295                 | Avg: 7.217               | Avg: 38.376                 |
|              |             | Min: 0.002<br>Max: 0.018 | Min: 0.138<br>Max: 405.700   | Min: 7.179<br>Max: 7.294 | Min: 32.125<br>Max: 159.875 |
| 08/10/2017   | EQMS-2      | Avg: 0.010               | Avg: 224.260                 | Avg: 7.189               | Avg: 33.683                 |
| 00, 10, 201, | Lights L    | Min: 0.002               | Min: 17.463                  | Min: 7.160               | Min: 32.344                 |
|              |             | Max: 0.015               | Max: 273.400                 | Max: 7.278               | Max: 34.750                 |
| 09/10/2017   | EQMS-2      | Avg: 0.008               | Avg: 184.793                 | Avg: 7.206               | Avg: 63.422                 |
|              |             | Min: 0.001<br>Max: 0.027 | Min: 16.338<br>Max: 294.775  | Min: 7.170<br>Max: 7.225 | Min: 56.844<br>Max: 90.312  |
| 16/10/2017   | EQMS-2      | Avg: 0.015               | Avg: 181.411                 | Avg: 7.265               | Avg: 35.291                 |
|              | ~           | Min: 0.007               | Min: 0.700                   | Min: 7.237               | Min: 33.219                 |
|              |             | Max: 0.024               | Max: 378.587                 | Max: 7.305               | Max: 89.000                 |
| 17/10/2017   | EQMS-2      | Avg: 0.012<br>Min: 0.002 | Avg: 225.218<br>Min: 17.125  | Avg: 7.339<br>Min: 7.191 | Avg: 33.885<br>Min: 32.563  |
|              |             | Max: 0.023               | Max: 374.425                 | Max: 7.495               | Max: 34.969                 |
| 18/10/2017   | EQMS-2      | Avg: 0.015               | Avg: 280.984                 | Avg: 7.239               | Avg: 33.824                 |
|              |             | Min: 0.012<br>Max: 0.019 | Min: 241.562<br>Max: 294.775 | Min: 7.231<br>Max: 7.260 | Min: 33.437<br>Max: 34.750  |
| 04/10/0015   | 7014 O      |                          |                              |                          | Avg: 36.210                 |
| 24/10/2017   | EQMS-2      | Avg: 0.010<br>Min: 0.003 | Avg: 215.683<br>Min: 16.450  | Avg: 6.392<br>Min: 6.381 | Min: 34.531                 |
|              |             | Max: 0.015               | Max: 935.913                 | Max: 6.824               | Max: 91.844                 |
| 25/10/2017   | EQMS-2      | Avg: 0.010               | Avg: 257.563                 | Avg: 6.490               | Avg: 35.142                 |
|              |             | Min: 0.002<br>Max: 0.018 | Min: 18.025<br>Max: 373.975  | Min: 6.397<br>Max: 6.564 | Min: 34.531<br>Max: 36.063  |
| 26/10/2017   | EQMS-2      | Avg: 0.011               | Avg: 264.700                 | Avg: 6.539               | Avg: 34.933                 |
| 20/10/2017   | EQMS-2      | Min: 0.004               | Min: 23.875                  | Min: 6.339               | Min: 34.313                 |
|              |             | Max: 0.018               | Max: 369.700                 | Max: 6.631               | Max: 35.844                 |
| 27/10/2017   | EQMS-2      | Avg: 0.009               | Avg: 192.220                 | Avg: 6.421               | Avg: 36.189                 |
|              |             | Min: 0.001<br>Max: 0.015 | Min: 15.775<br>Max: 346.188  | Min: 6.336<br>Max: 6.482 | Min: 33.219<br>Max: 66.031  |
| 28/10/2017   | EQMS-2      | Avg: 0.011               | Avg: 138.476                 | Avg: 6.417               | Avg: 34.695                 |
|              | •           | Min: 0.008               | Min: 15.212                  | Min: 6.411               | Min: 34.531                 |
|              | 1           | Max: 0.012               | Max: 292.413                 | Max: 6.421               | Max: 35.625                 |
| 08/11/2017   | EQMS-2      | Avg: 0.019               | Avg: 209.824                 | Avg: 4.258               | Avg: 40.229                 |
|              |             | Min: 0.011<br>Max: 0.029 | Min: 0.025<br>Max: 333.475   | Min: 2.975<br>Max: 5.027 | Min: 38.906<br>Max: 48.094  |
| 09/11/2017   | EQMS-2      | Avg: 0.022               | Avg: 208.536                 | Avg: 2.561               | Avg: 45.637                 |
|              | <u> </u>    | Min: 0.002               | Min: 14.425                  | Min: 0.652               | Min: 36.937                 |
|              |             | Max: 0.036               | Max: 292.750                 | Max: 4.025               | Max: 166.437                |
| 10/11/2017   | EQMS-2      | Avg: 0.022<br>Min: 0.012 | Avg: 242.850<br>Min: 15.212  | Avg: 2.442<br>Min: 0.809 | Avg: 39.964<br>Min: 38.906  |
|              |             | Max: 0.032               | Max: 303.100                 | Max: 3.884               | Max: 41.531                 |
| 14/11/2017   | EQMS-2      | Avg: 0.015               | Avg: 227.885                 | Avg: 6.975               | Avg: 42.263                 |
|              |             | Min: 0.008               | Min: 13.412                  | Min: 6.797               | Min: 41.094                 |
| 15/11/2015   | HOME O      | Max: 0.019               | Max: 298.037                 | Max: 7.291               | Max: 43.500                 |
| 15/11/2017   | EQMS-2      | Avg: 0.019<br>Min: 0.016 | N/A                          | Avg: 6.492<br>Min: 6.214 | Avg: 42.220<br>Min: 41.094  |
|              | 1           | Max: 0.026               |                              | Max: 6.793               | Max: 43.281                 |
| 16/11/2017   | EQMS-2      | Avg: 0.017               | Avg: 269.446                 | Avg: 6.854               | Avg: 42.182                 |
|              |             | Min: 0.012<br>Max: 0.023 | Min: 32.987<br>Max: 336.738  | Min: 6.088<br>Max: 7.023 | Min: 41.094<br>Max: 42.406  |
| 17/11/2017   | EQMS-2      | Avg: 0.017               | Avg: 234.891                 | Avg: 6.123               | Avg: 44.524                 |
| 1//11/2U1/   | Lymb-z      | Min: 0.012               | Min: 14.538                  | Min: 5.136               | Min: 41.094                 |
|              | <u> </u>    | Max: 0.025               | Max: 296.913                 | Max: 6.661               | Max: 51.375                 |



S Baiasore Alloys Lta. (Chromite), Jajpur, 753047 Created Date: Tue Apr 10 11:48:53 IST 2018

| 150   Security   Control of the co |            | I           |                          | I                           | I                        |                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|--------------------------|-----------------------------|--------------------------|----------------------------|
| Main   1,000   Main | Day        | Station Id. | Cr6+ (in mg/l)           | FLOW (in m3/h)              | PH (in ph)               | TSS (in mg/l)              |
| 29/11/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18/11/2017 | EQMS-2      | Min: 0.008               | Min: 1.825                  | Min: 4.474               | Min: 43.281                |
| Main   0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19/11/2017 | EQMS-2      | Avg: 0.011<br>Min: 0.000 | Avg: 219.614<br>Min: 15.775 | Avg: 5.529<br>Min: 5.074 | Min: 45.687                |
| Milit   0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20/11/2017 | EQMS-2      | Min: 0.002               | Min: 14.650                 | Min: 5.287               | Min: 57.281                |
| 22/11/2017   EQMS-2   Avgs 0.014   Avgs 22.046   Avgs 5.455   Avgs 56.130   Mins 3.046   Mins 3.042   Mins 4.042   Mins  | 21/11/2017 | EQMS-2      | Min: 0.000               | Min: 14.538                 | Min: 5.434               | Min: 60.344                |
| 29/11/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22/11/2017 | EQMS-2      | Avg: 0.014<br>Min: 0.003 | Avg: 225.946<br>Min: 14.538 | Avg: 5.455<br>Min: 5.069 | Avg: 56.190<br>Min: 32.344 |
| 24/11/2017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23/11/2017 | EQMS-2      | Avg: 0.016<br>Min: 0.001 | Avg: 234.812<br>Min: 15.100 | Avg: 5.181<br>Min: 4.747 | Avg: 51.171<br>Min: 33.219 |
| Milit 0.009   Milit 14.538   Max; 3.665   Max; 166.437     Max 0.032   Max; 34.163   Max; 3.665   Max; 166.437     Milit 0.008   Milit 2.005   Max; 34.163   Max; 3.665   Max; 166.437     Milit 0.008   Milit 2.005   Milit 2.006   Milit 3.006   Milit 3.006     Milit 0.008   Milit 2.005   Milit 3.006   Milit 3.006   Milit 3.006   Milit 3.006     Milit 0.008   Milit 2.005   Milit 3.006   Milit 3.006   Milit 3.006     Milit 0.003   Milit 16.338   Milit 4.792   Milit 35.406     Max 0.032   Max; 291.063   Max; 6.004   Max; 82.556     Max 0.032   Max; 291.063   Max; 6.004   Max; 82.556     Max 0.033   Milit 15.100   Max; 6.004   Max; 82.556     Milit 0.003   Milit 15.100   Milit 4.633   Milit 35.406     Max 0.031   Milit 15.100   Milit 4.633   Milit 35.406     Max 0.031   Milit 15.100   Milit 4.633   Milit 36.636     Max 0.032   Max; 27.127   Milit 4.633   Milit 36.636     Max 0.031   Milit 3.006   Max; 37.597   Max; 36.637     Max 0.032   Max; 37.008   Max; 37.597   Max; 38.637     Max 0.032   Max; 37.008   Max; 37.597   Max; 38.637     Max 0.032   Max; 37.008   Max; 37.561   Max; 37.562     Max 0.032   Max; 37.008   Max; 37.561   Max; 38.637     Max 0.032   Max; 37.562   Max; 37.562   Max; 38.637     Max 0.032   Max; 37.562   Max; 37.562   Max; 38.637     Max 0.032   Max; 37.562   Max; 37.562   Max; 38.637     Max 0.032   Max; 37.362   Max; 37.562   Max; 38.637     Max 0.032   Max; 37.362   Max; 37.362   Max; 37.562     Max 0.032   Max; 37.362   Max; 37.362   Max; 38.637     Max 0.032   Max; 37.362   Max; 37.362   Max; 38.637     Max 0.032   Max; 37.362   Max; 37.362   Max; 38.637     Max 0.032   Max; 37.362   Max; 37.362   Max; 37.362     Max 0.033   Max; 37.362   Max; 37.362   Max; 37.362     Max 0.033   Max; 37.362   Max; 37.362   Max; 37.362     Max 0.034   Max; 37.362   Max; 37.362   Max; 37.362     Max 0.034   Max; 37.362   Max; 37.362   Max; 3 | 24/11/2017 | EQMS-2      | Min: 0.000               | Min: 13.412                 | Avg: 5.519<br>Min: 4.859 | Min: 43.281                |
| 26/11/2017   NOME - 2   Nay: 0.013   Nay: 0.029   Nai: 270.475   Nai: 0.068   Nai: 0.008   Nai: 0.009   Nai: 0.008   Nai: 0.009   Nai: 0.008   Nai: 0.009   Nai | 25/11/2017 | EQMS-2      | Min: 0.009               | Min: 14.538                 | Min: 4.895               | Min: 35.844                |
| EQMS-2   Avg.   0.14   Avg.   108.296   Avg.   5.51   May.   33.34   Min.   16.30   Min.   4.792   Max.   33.34   Min.   16.338   Min.   4.792   Max.   33.34   Min.   16.338   Min.   4.792   Max.   35.406   Max.   28.411/2017   EQMS-2   Avg.   0.016   Min.   0.003   Min.   15.100   Min.   4.792   Min.   35.406   Min.   35.407   Mi | 26/11/2017 | EQMS-2      | Avg: 0.017<br>Min: 0.008 | Avg: 70.130<br>Min: 2.050   | Avg: 5.284<br>Min: 4.706 | Avg: 72.433<br>Min: 56.625 |
| BQMS-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27/11/2017 | EQMS-2      | Avg: 0.014<br>Min: 0.003 | Avg: 108.296<br>Min: 16.338 | Avg: 5.551<br>Min: 4.792 | Avg: 48.934<br>Min: 35.406 |
| 29/11/2017   EQMS-2   Ayg. 0.020   Ayg. 27.117   Ayg. 6.199   Ayg. 37.60   Max. 14.538   Min. 5.357   Min. 35.406   Max. 16.015   Min. 14.538   Min. 5.357   Max. 18.507   Max. 18.507 | 28/11/2017 | EQMS-2      | Avg: 0.016<br>Min: 0.003 | Avg: 175.094<br>Min: 15.100 | Avg: 5.951<br>Min: 4.563 | Avg: 40.526<br>Min: 35.406 |
| 20/01/2018   EQMS-2   Nyg; 0.005   Nay; 101.339   Nyg; 6.199   Nyg; 32.015   Nax; 0.012   Max; 364.300   Max; 6.561   Max; 34.531   Nax; 34.531   Nax; 364.300   Max; 6.561   Max; 34.531   Nax; 34.531   Nax; 364.300   Max; 6.561   Max; 34.531   Nax; 34. | 29/11/2017 | EQMS-2      | Avg: 0.020<br>Min: 0.018 | Avg: 27.127<br>Min: 14.538  | Avg: 5.425<br>Min: 5.357 | Avg: 36.469<br>Min: 35.406 |
| 21/01/2018   EQMS-2   Navg: 0.006   Navg: 188.490   Navg: 5.806   Navg: 38.617   Navg: 0.009   Navg: 0.009   Navg: 0.009   Navg: 0.009   Navg: 0.009   Navg: 0.004   Navg: 0.009   Navg: 0.004   Navg: 0.001   Nav | 20/01/2018 | EQMS-2      | Avg: 0.005<br>Min: 0.001 | Avg: 101.339<br>Min: 14.538 | Avg: 6.199<br>Min: 5.947 | Avg: 32.015<br>Min: 30.813 |
| 22/01/2018   EQMS-2   Avg: 0.004   Avg: 24.6.927   Avg: 6.141   Avg: 41.028   Min: 5.054   Min: 30.813   Max: 0.015   Max: 315.475   Min: 5.054   Max: 163.156   Max: 163 | 21/01/2018 | EQMS-2      | Min: 0.000               | Min: 14.538                 | Min: 4.886               | Min: 31.031                |
| 23/01/2018   EQMS-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22/01/2018 | EQMS-2      | Min: 0.000               | Min: 16.225                 | Min: 5.504               | Min: 30.813                |
| Min: 0.000   Min: 15.100   Min: 5.207   Min: 35.406   Max: 6.584   Max: 6.584   Max: 43.719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23/01/2018 | EQMS-2      | Min: 0.000               | Min: 22.638                 | Min: 4.894               | Min: 31.250                |
| Min: 0.000   Max: 340.225   Max: 7.326   Max: 43.500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24/01/2018 | EQMS-2      | Min: 0.000               | Min: 15.100                 | Min: 5.227               | Min: 35.406                |
| Min: 0.013   Max: 0.023   Max: 309.062   Max: 7.356   Max: 31.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 25/01/2018 | EQMS-2      | Min: 0.000               | Min: 13.412                 | Min: 5.670               | Min: 28.844                |
| Min: 0.013   Min: 14.538   Min: 6.155   Min: 28.844     Max: 0.019   Max: 313.675   Max: 7.265   Max: 30.156     28/01/2018   EQMS-2   Avg: 0.017   Avg: 201.023   Avg: 7.068   Avg: 30.032     Min: 0.013   Min: 15.663   Min: 5.871   Min: 29.063     Max: 0.024   Max: 306.700   Max: 8.765   Avg: 29.940     Min: 0.012   Min: 15.212   Min: 6.949   Min: 28.844     Max: 0.020   Max: 31.775   Max: 8.773   Max: 31.250     30/01/2018   EQMS-2   Avg: 0.015   Avg: 234.833   Avg: 6.888   Avg: 29.985     Min: 0.012   Min: 14.650   Min: 6.080   Min: 28.844     Max: 0.023   Max: 33.813   Max: 7.637   Max: 31.250     31/01/2018   EQMS-2   Avg: 0.015   Avg: 217.161   Avg: 7.264   Avg: 29.483     Min: 0.023   Max: 33.813   Max: 7.637   Max: 33.813     01/02/2018   EQMS-2   Avg: 0.015   Avg: 285.978   Avg: 7.708   Avg: 29.461     Min: 0.019   Min: 23.200   Min: 6.060   Min: 28.844     Max: 0.019   Max: 307.825   Max: 8.467   Max: 30.375     02/02/2018   EQMS-2   Avg: 0.016   Avg: 259.227   Avg: 7.780   Avg: 29.755     Min: 0.023   Max: 302.988   Max: 36.57   Avg: 29.724     Min: 0.009   Min: 14.588   Min: 6.155   Min: 28.625     Max: 0.022   Max: 30.375   Max: 31.250     04/02/2018   EQMS-2   Avg: 0.015   Avg: 273.266   Avg: 8.057   Avg: 29.724     Min: 0.009   Min: 14.588   Min: 6.552   Min: 28.625     Max: 0.022   Max: 30.375   Max: 9.031   Max: 31.250     05/02/2018   EQMS-2   Avg: 0.015   Avg: 276.188   Avg: 8.753   Avg: 29.724     Min: 0.009   Min: 14.588   Min: 6.552   Min: 28.625     Max: 0.020   Max: 303.775   Max: 9.331   Max: 31.250     05/02/2018   EQMS-2   Avg: 0.015   Avg: 274.188   Avg: 8.753   Avg: 29.876     Min: 0.009   Min: 16.338   Min: 7.563   Min: 28.625     Max: 0.020   Max: 303.775   Max: 9.331   Max: 31.250     06/02/2018   EQMS-2   Avg: 0.015   Avg: 254.311   Avg: 8.723   Avg: 29.876     Min: 0.009   Min: 16.338   Min: 7.500   Max: 31.250     06/02/2018   EQMS-2   Avg: 0.015   Avg: 211.789   Avg: 8.122   Avg: 29.765     Min: 0.008   Min: 16.338   Min: 7.291   Min: 28.625     06/02/2018   EQMS-2   Avg: 0. | 26/01/2018 | EQMS-2      | Min: 0.013               | Min: 15.100                 | Min: 5.989               | Min: 28.625                |
| Min: 0.013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 27/01/2018 | EQMS-2      | Min: 0.013               | Min: 14.538                 | Min: 6.155               | Min: 28.844                |
| Min: 0.012   Max: 0.020   Max: 321.775   Max: 8.773   Max: 31.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 28/01/2018 | EQMS-2      | Min: 0.013               | Min: 15.663                 | Min: 5.871               | Min: 29.063                |
| Min: 0.012   Min: 14.650   Min: 6.080   Min: 28.844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29/01/2018 | EQMS-2      | Min: 0.012               | Min: 15.212                 | Min: 6.949               | Min: 28.844                |
| Min: 0.009   Min: 16.787   Min: 6.465   Min: 28.844   Max: 0.023   Max: 306.925   Max: 8.009   Max: 30.813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30/01/2018 | EQMS-2      | Min: 0.012               | Min: 14.650                 | Min: 6.080               | Min: 28.844                |
| Min: 0.010   Min: 23.200   Min: 6.060   Min: 28.844   Max: 0.019   Max: 307.825   Max: 8.467   Max: 30.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 31/01/2018 | EQMS-2      | Min: 0.009               | Min: 16.787                 | Min: 6.465               | Min: 28.844                |
| Min: 0.010   Min: 20.387   Min: 6.155   Min: 28.625   Max: 0.023   Max: 302.988   Max: 8.821   Max: 31.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 01/02/2018 | EQMS-2      | Min: 0.010               | Min: 23.200                 | Min: 6.060               | Min: 28.844                |
| Min: 0.009   Min: 14.538   Min: 6.552   Min: 28.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 02/02/2018 | EQMS-2      | Min: 0.010               | Min: 20.387                 | Min: 6.155               | Min: 28.625                |
| Min: 0.009   Min: 21.400   Min: 6.963   Min: 28.625   Max: 0.020   Max: 303.775   Max: 9.331   Max: 31.250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 03/02/2018 | EQMS-2      | Min: 0.009               | Min: 14.538                 | Min: 6.552               | Min: 28.625                |
| Min: 0.009 Min: 16.338 Min: 7.563 Min: 28.844 Max: 0.019 Max: 331.338 Max: 9.500 Max: 31.250  06/02/2018 EQMS-2 Avg: 0.015 Avg: 211.789 Avg: 8.122 Avg: 29.765 Min: 0.008 Min: 16.338 Min: 7.291 Min: 28.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 04/02/2018 | EQMS-2      | Min: 0.009               | Min: 21.400                 | Min: 6.963               | Min: 28.625                |
| Min: 0.008 Min: 16.338 Min: 7.291 Min: 28.625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 05/02/2018 | EQMS-2      | Min: 0.009               | Min: 16.338                 | Min: 7.563               | Min: 28.844                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 06/02/2018 | EQMS-2      | Min: 0.008               | Min: 16.338                 | Min: 7.291               | Min: 28.625                |



A/s Baiasore Alloys Lta. (Chromite),Jajpur,/5504/ Created Date: Tue Apr 10 11:48:53 IST 2018

| Day           | Station Id. | Cr6+ (in mg/l)           | FLOW (in m3/h)              | PH (in ph)               | TSS (in mg/l)               |
|---------------|-------------|--------------------------|-----------------------------|--------------------------|-----------------------------|
| 07/02/2018    | EQMS-2      | Avg: 0.014<br>Min: 0.008 | Avg: 251.374<br>Min: 13.525 | Avg: 7.253<br>Min: 6.183 | Avg: 29.791<br>Min: 28.625  |
|               |             | Max: 0.018               | Max: 472.300                | Max: 7.923               | Max: 31.250                 |
| 08/02/2018    | EQMS-2      | Avg: 0.013               | Avg: 247.929                | Avg: 7.255               | Avg: 30.291                 |
|               |             | Min: 0.008<br>Max: 0.017 | Min: 13.412<br>Max: 340.562 | Min: 6.877<br>Max: 7.517 | Min: 28.844<br>Max: 32.563  |
| 09/02/2018    | EQMS-2      | Avg: 0.014               | Avg: 262.937                | Avg: 6.950               | Avg: 30.992                 |
|               |             | Min: 0.009<br>Max: 0.018 | Min: 15.100<br>Max: 382.637 | Min: 6.379<br>Max: 7.240 | Min: 29.937<br>Max: 42.406  |
| 10/02/2018    | EQMS-2      | Avg: 0.014               | Avg: 248.420                | Avg: 7.091               | Avg: 31.214                 |
|               |             | Min: 0.009<br>Max: 0.017 | Min: 13.750<br>Max: 344.275 | Min: 6.293<br>Max: 7.894 | Min: 29.937<br>Max: 32.563  |
| 11/02/2018    | EQMS-2      | Avg: 0.014               | Avg: 222.188                | Avg: 7.224               | Avg: 66.468                 |
|               |             | Min: 0.010<br>Max: 0.016 | Min: 15.663<br>Max: 351.475 | Min: 6.716<br>Max: 8.011 | Min: 31.250<br>Max: 150.906 |
| 12/02/2018    | EQMS-2      | Avg: 0.012               | Avg: 242.408                | Avg: 7.138               | Avg: 38.904                 |
|               |             | Min: 0.009<br>Max: 0.017 | Min: 15.775<br>Max: 314.350 | Min: 6.531<br>Max: 7.877 | Min: 29.937<br>Max: 76.094  |
| 13/02/2018    | EQMS-2      | Avg: 0.013               | Avg: 226.963                | Avg: 7.290               | Avg: 43.191                 |
| 137 027 2010  | EQNO-2      | Min: 0.008<br>Max: 0.018 | Min: 16.787<br>Max: 340.225 | Min: 6.415<br>Max: 7.890 | Min: 29.937<br>Max: 152.000 |
| 14/02/2018    | FOVE 2      |                          |                             | <u> </u>                 | Avg: 46.622                 |
| 14/02/2018    | EQMS-2      | Avg: 0.014<br>Min: 0.009 | Avg: 237.241<br>Min: 14.650 | Avg: 6.924<br>Min: 6.490 | Min: 29.937                 |
|               |             | Max: 0.018               | Max: 322.000                | Max: 7.448               | Max: 66.031                 |
| 15/02/2018    | EQMS-2      | Avg: 0.014<br>Min: 0.009 | Avg: 243.573<br>Min: 15.212 | Avg: 7.244<br>Min: 6.458 | Avg: 30.829<br>Min: 29.937  |
|               |             | Max: 0.018               | Max: 320.088                | Max: 7.882               | Max: 32.344                 |
| 16/02/2018    | EQMS-2      | Avg: 0.014<br>Min: 0.009 | Avg: 282.337<br>Min: 26.125 | Avg: 7.331<br>Min: 6.737 | Avg: 39.877<br>Min: 29.937  |
|               |             | Max: 0.019               | Max: 464.650                | Max: 8.012               | Max: 150.906                |
| 17/02/2018    | EQMS-2      | Avg: 0.014               | Avg: 268.442                | Avg: 7.025               | Avg: 44.273                 |
|               |             | Min: 0.008<br>Max: 0.019 | Min: 37.150<br>Max: 405.812 | Min: 5.844<br>Max: 7.688 | Min: 29.937<br>Max: 61.438  |
| 18/02/2018    | EQMS-2      | Avg: 0.013               | Avg: 215.493                | Avg: 6.854               | Avg: 30.936                 |
|               |             | Min: 0.008<br>Max: 0.018 | Min: 25.563<br>Max: 341.913 | Min: 5.948<br>Max: 7.911 | Min: 29.937<br>Max: 32.125  |
| 19/02/2018    | EQMS-2      | Avg: 0.012               | Avg: 244.163                | Avg: 7.193               | Avg: 30.973                 |
|               |             | Min: 0.008<br>Max: 0.018 | Min: 30.287<br>Max: 362.387 | Min: 6.318<br>Max: 8.027 | Min: 29.937<br>Max: 31.469  |
| 20/02/2018    | EQMS-2      | Avg: 0.012               | Avg: 270.488                | Avg: 7.466               | Avg: 31.984                 |
| 20,02,2010    | Lgas L      | Min: 0.008               | Min: 20.387                 | Min: 6.616               | Min: 29.937                 |
| 01 /00 /0010  | TOYE O      | Max: 0.018               | Max: 351.025                | Max: 8.055               | Max: 112.625                |
| 21/02/2018    | EQMS-2      | Avg: 0.012<br>Min: 0.008 | Avg: 233.323<br>Min: 14.650 | Avg: 7.079<br>Min: 5.912 | Avg: 35.198<br>Min: 29.937  |
|               |             | Max: 0.018               | Max: 365.425                | Max: 7.529               | Max: 152.000                |
| 22/02/2018    | EQMS-2      | Avg: 0.012<br>Min: 0.008 | Avg: 265.416<br>Min: 14.875 | Avg: 7.167<br>Min: 6.386 | Avg: 31.106<br>Min: 29.937  |
|               |             | Max: 0.018               | Max: 309.400                | Max: 7.915               | Max: 32.344                 |
| 23/02/2018    | EQMS-2      | Avg: 0.011<br>Min: 0.008 | Avg: 252.301<br>Min: 17.012 | Avg: 7.290<br>Min: 6.495 | Avg: 31.077<br>Min: 29.937  |
|               |             | Max: 0.018               | Max: 340.562                | Max: 7.970               | Max: 31.469                 |
| 24/02/2018    | EQMS-2      | Avg: 0.010               | Avg: 252.375                | Avg: 7.690               | Avg: 31.668                 |
|               |             | Min: 0.008<br>Max: 0.017 | Min: 15.775<br>Max: 339.775 | Min: 6.417<br>Max: 8.250 | Min: 29.937<br>Max: 60.344  |
| 25/02/2018    | EQMS-2      | Avg: 0.012               | Avg: 319.430                | Avg: 7.533               | Avg: 72.533                 |
|               |             | Min: 0.004<br>Max: 0.018 | Min: 16.338<br>Max: 481.863 | Min: 6.933<br>Max: 8.063 | Min: 30.156<br>Max: 150.906 |
| 26/02/2018    | EQMS-2      | Avg: 0.010               | Avg: 256.212                | Avg: 7.011               | Avg: 57.806                 |
|               |             | Min: 0.004               | Min: 14.650                 | Min: 6.488               | Min: 30.156<br>Max: 141.062 |
| 27 (02 (2010  | FOVE 2      | Max: 0.018               | Max: 357.100                | Max: 8.179               |                             |
| 27/02/2018    | EQMS-2      | Avg: 0.013<br>Min: 0.008 | Avg: 224.769<br>Min: 15.212 | Avg: 6.803<br>Min: 6.289 | Avg: 49.873<br>Min: 32.125  |
|               |             | Max: 0.017               | Max: 347.200                | Max: 7.288               | Max: 87.250                 |
| 28/02/2018    | EQMS-2      | Avg: 0.010<br>Min: 0.006 | Avg: 253.034<br>Min: 15.100 | Avg: 7.200<br>Min: 6.680 | Avg: 39.300<br>Min: 33.437  |
|               |             | Max: 0.018               | Max: 330.438                | Max: 7.379               | Max: 52.469                 |
| 01/03/2018    | EQMS-2      | Avg: 0.016<br>Min: 0.002 | Avg: 241.279<br>Min: 16.338 | Avg: 7.114<br>Min: 6.729 | Avg: 105.490<br>Min: 46.781 |
|               |             | Max: 0.038               | Max: 355.863                | Max: 7.596               | Max: 199.469                |
| 02/03/2018    | EQMS-2      | Avg: 0.018               | Avg: 269.919                | Avg: 7.178               | Avg: 91.086                 |
|               |             | Min: 0.011<br>Max: 0.033 | Min: 14.650<br>Max: 344.838 | Min: 6.899<br>Max: 8.119 | Min: 73.688<br>Max: 124.438 |
| 03/03/2018    | EQMS-2      | Avg: 0.026               | Avg: 247.850                | Avg: 7.294               | Avg: 97.918                 |
|               |             | Min: 0.014<br>Max: 0.046 | Min: 4.525<br>Max: 343.262  | Min: 6.667<br>Max: 8.301 | Min: 74.781<br>Max: 141.062 |
| 04/03/2018    | EQMS-2      | Avg: 0.019               | Avg: 186.052                | Avg: 7.773               | Avg: 59.367                 |
|               |             | Min: 0.013<br>Max: 0.027 | Min: 11.838<br>Max: 309.962 | Min: 7.098<br>Max: 8.731 | Min: 51.156<br>Max: 79.375  |
| 05/03/2018    | EQMS-2      | Avg: 0.019               | Avg: 264.742                | Avg: 8.017               | Avg: 50.684                 |
| 33, 33, 2010  | 22.20       | Min: 0.014               | Min: 14.650                 | Min: 7.465               | Min: 48.969                 |
| 06/03/2019    | FOME- 2     | Max: 0.026               | Max: 329.987                | Max: 8.775               | Max: 54.656                 |
| 06/03/2018    | EQMS-2      | Avg: 0.019<br>Min: 0.014 | Avg: 273.088<br>Min: 0.250  | Avg: 7.916<br>Min: 7.481 | Avg: 49.414<br>Min: 46.781  |
| оп (оо (сет с |             | Max: 0.027               | Max: 379.600                | Max: 8.508               | Max: 81.781                 |
| 07/03/2018    | EQMS-2      | Avg: 0.019<br>Min: 0.014 | Avg: 255.294<br>Min: 14.650 | Avg: 7.537<br>Min: 6.918 | Avg: 47.867<br>Min: 46.563  |
|               |             | Max: 0.026               | Max: 329.200                | Max: 8.346               | Max: 48.313                 |
| 08/03/2018    | EQMS-2      | Avg: 0.020<br>Min: 0.015 | Avg: 271.327<br>Min: 2.838  | Avg: 7.023<br>Min: 6.514 | Avg: 47.964<br>Min: 46.781  |
|               |             | Max: 0.027               | Max: 410.200                | Max: 7.549               | Max: 49.406                 |
|               |             |                          |                             |                          |                             |



Plant: Kaliapani Chromite mines of M/s Balasore Alloys Ltd. (Chromite), Jajpur, 755047 Created Date: Tue Apr 10 11:48:53 IST 2018

| Day           | Station Id.  | Cr6+ (in mg/l)           | FLOW (in m3/h)              | PH (in ph)               | TSS (in mg/l)              |
|---------------|--------------|--------------------------|-----------------------------|--------------------------|----------------------------|
| 09/03/2018    | EQMS-2       | Avg: 0.019               | Avg: 299.517                | Avg: 7.160               | Avg: 48.338                |
| 037 037 2010  | EQM5-Z       | Min: 0.014               | Min: 13.525                 | Min: 6.617               | Min: 47.000                |
|               |              | Max: 0.027               | Max: 415.150                | Max: 7.744               | Max: 49.406                |
| 10/03/2018    | EQMS-2       | Avg: 0.018               | Avg: 328.645                | Avg: 7.217               | Avg: 48.511                |
| 10/03/2018    | EQMS-Z       | Min: 0.011               | Min: 15.775                 | Min: 6.809               | Min: 46.781                |
|               |              | Max: 0.024               | Max: 394.563                | Max: 7.841               | Max: 49.406                |
| 11 (02 (0010  | TOYA O       |                          |                             |                          |                            |
| 11/03/2018    | EQMS-2       | Avg: 0.018<br>Min: 0.014 | Avg: 281.577<br>Min: 17.125 | Avg: 7.226<br>Min: 6.841 | Avg: 48.567<br>Min: 47.656 |
|               |              | Max: 0.014               | Max: 351.812                | Max: 7.751               | Max: 49.406                |
|               | _            |                          |                             |                          |                            |
| 12/03/2018    | EQMS-2       | Avg: 0.018               | Avg: 304.031                | Avg: 7.466               | Avg: 48.432<br>Min: 47.875 |
|               |              | Min: 0.014<br>Max: 0.023 | Min: 14.650<br>Max: 457.900 | Min: 7.018<br>Max: 7.836 | Max: 49.406                |
|               |              |                          |                             |                          |                            |
| 13/03/2018    | EQMS-2       | Avg: 0.018               | Avg: 310.293                | Avg: 7.286               | Avg: 48.454                |
|               |              | Min: 0.010               | Min: 22.750                 | Min: 6.910               | Min: 47.875                |
|               |              | Max: 0.023               | Max: 368.575                | Max: 7.914               | Max: 49.406                |
| 14/03/2018    | EQMS-2       | Avg: 0.019               | Avg: 303.130                | Avg: 6.999               | Avg: 52.080                |
|               |              | Min: 0.014               | Min: 59.763                 | Min: 6.715               | Min: 46.781                |
|               |              | Max: 0.026               | Max: 352.150                | Max: 7.610               | Max: 60.781                |
| 15/03/2018    | EQMS-2       | Avg: 0.019               | Avg: 287.422                | Avg: 7.063               | Avg: 52.713                |
|               | 1            | Min: 0.014               | Min: 14.763                 | Min: 6.488               | Min: 51.156                |
|               | 1            | Max: 0.026               | Max: 472.075                | Max: 7.758               | Max: 55.750                |
| 16/03/2018    | EQMS-2       | Avg: 0.019               | Avg: 305.522                | Avg: 7.009               | Avg: 51.425                |
|               | 1            | Min: 0.014               | Min: 36.025                 | Min: 6.863               | Min: 51.156                |
|               |              | Max: 0.022               | Max: 450.137                | Max: 7.254               | Max: 52.469                |
| 17/03/2018    | EQMS-2       | Avg: 0.019               | Avg: 282.097                | Avg: 7.194               | Avg: 50.852                |
|               | l "          | Min: 0.015               | Min: 16.338                 | Min: 6.747               | Min: 50.063                |
|               |              | Max: 0.022               | Max: 465.663                | Max: 7.582               | Max: 52.469                |
| 18/03/2018    | EQMS-2       | Avg: 0.019               | Avg: 307.592                | Avg: 7.275               | Avg: 50.484                |
| 10, 03, 2010  | LYND L       | Min: 0.014               | Min: 19.825                 | Min: 6.679               | Min: 49.406                |
|               |              | Max: 0.024               | Max: 484.675                | Max: 7.886               | Max: 51.594                |
| 19/03/2018    | EQMS-2       | Avg: 0.017               | Avg: 324.726                | Avg: 7.243               | Avg: 40.401                |
| 19/03/2018    | EQMS-Z       | Min: 0.011               | Min: 15.325                 | Min: 5.475               | Min: 32.125                |
|               |              | Max: 0.022               | Max: 437.087                | Max: 7.533               | Max: 100.812               |
| 20 /02 /2018  | HOMA 2       | Avg: 0.016               | Avg: 291.027                | Avg: 7.365               | Avg: 32.819                |
| 20/03/2018    | EQMS-2       | Min: 0.011               | Min: 17.463                 | Min: 6.944               | Min: 32.125                |
|               |              | Max: 0.021               | Max: 359.463                | Max: 7.833               | Max: 33.875                |
| 01 (02 (001 0 | T0145 0      |                          |                             |                          |                            |
| 21/03/2018    | EQMS-2       | Avg: 0.016<br>Min: 0.011 | Avg: 305.214<br>Min: 15.325 | Avg: 7.533<br>Min: 6.858 | Avg: 33.007<br>Min: 32.125 |
|               |              | Max: 0.020               | Max: 530.913                | Max: 7.982               | Max: 33.875                |
|               |              |                          |                             |                          |                            |
| 22/03/2018    | EQMS-2       | Avg: 0.015               | Avg: 292.419                | Avg: 7.609               | Avg: 33.029                |
|               |              | Min: 0.010<br>Max: 0.021 | Min: 15.325<br>Max: 345.175 | Min: 7.127<br>Max: 8.042 | Min: 32.125<br>Max: 33.875 |
|               |              |                          |                             |                          |                            |
| 23/03/2018    | EQMS-2       | Avg: 0.014               | Avg: 275.390                | Avg: 7.672               | Avg: 34.555                |
|               |              | Min: 0.010               | Min: 4.638                  | Min: 7.252               | Min: 32.125                |
|               |              | Max: 0.021               | Max: 358.450                | Max: 8.101               | Max: 36.281                |
| 24/03/2018    | EQMS-2       | Avg: 0.015               | Avg: 264.047                | Avg: 7.687               | Avg: 38.316                |
|               | 1            | Min: 0.010               | Min: 17.012                 | Min: 7.155               | Min: 33.437                |
|               | <del> </del> | Max: 0.018               | Max: 343.375                | Max: 8.083               | Max: 48.313                |
| 25/03/2018    | EQMS-2       | Avg: 0.016               | Avg: 284.826                | Avg: 7.475               | Avg: 36.940                |
|               | 1            | Min: 0.012               | Min: 15.887                 | Min: 7.289               | Min: 35.625                |
|               |              | Max: 0.018               | Max: 345.400                | Max: 7.854               | Max: 38.250                |
| 26/03/2018    | EQMS-2       | Avg: 0.014               | Avg: 279.814                | Avg: 7.217               | Avg: 36.197                |
|               | 1            | Min: 0.010               | Min: 0.025                  | Min: 6.834               | Min: 34.969                |
|               |              | Max: 0.019               | Max: 335.613                | Max: 7.846               | Max: 37.375                |
| 27/03/2018    | EQMS-2       | Avg: 0.015               | Avg: 287.378                | Avg: 6.898               | Avg: 35.988                |
|               | -            | Min: 0.010               | Min: 0.025                  | Min: 6.448               | Min: 34.750                |
|               |              | Max: 0.019               | Max: 389.725                | Max: 7.288               | Max: 37.375                |
| 28/03/2018    | EQMS-2       | Avg: 0.015               | Avg: 344.460                | Avg: 6.926               | Avg: 35.980                |
|               |              | Min: 0.010               | Min: 0.025                  | Min: 6.534               | Min: 34.531                |
|               |              | Max: 0.020               | Max: 419.200                | Max: 7.315               | Max: 37.156                |
| 29/03/2018    | EQMS-2       | Avg: 0.015               | Avg: 318.052                | Avg: 6.968               | Avg: 35.900                |
| 25,03,2010    | 12H0-2       | Min: 0.010               | Min: 15.325                 | Min: 6.687               | Min: 34.750                |
|               | 1            | Max: 0.020               | Max: 398.837                | Max: 7.260               | Max: 37.156                |
| 30/03/2018    | FOMS-2       | Avg: 0.015               |                             | Avg: 6.977               |                            |
| 30/03/2018    | EQMS-2       | Min: 0.011               | Avg: 307.322<br>Min: 14.763 | Min: 6.706               | Avg: 35.839<br>Min: 34.531 |
|               |              | Max: 0.018               | Max: 395.800                | Max: 7.242               | Max: 36.937                |
| 21 /02 /001 6 | T0145 0      |                          |                             |                          |                            |
| 31/03/2018    | EQMS-2       | Avg: 0.015               | Avg: 327.084                | Avg: 6.975               | Avg: 35.871                |
|               |              | Min: 0.010<br>Max: 0.021 | Min: 18.138<br>Max: 410.200 | Min: 6.733<br>Max: 7.288 | Min: 34.531<br>Max: 36.937 |
|               | 1            | U.UZI                    | 110.200                     |                          | JU-33/                     |

## KALIAPANI CHROMITE MINES, M/S BALASORE ALLOYS LTD

### **TEST RESULTS OF DRINKING WATER FOR Cr+6 Con.**

| SI.<br>No. | Station<br>Details         | Co-<br>ordinates                                               | CPCB<br>Standard | ( , ,  |        |        |        |        |          |
|------------|----------------------------|----------------------------------------------------------------|------------------|--------|--------|--------|--------|--------|----------|
|            |                            |                                                                |                  | Oct,17 | Nov,17 | Dec,17 | Jan,18 | Feb,18 | March,18 |
| 1.         | TISCO Camp<br>(GW1)        | 21 <sup>0</sup><br>01'44.8"N<br>85 <sup>0</sup><br>44'44.6"E   |                  | 0.010  | 0.018  | 0.026  | 0.018  | 0.016  | 0.010    |
| 2.         | Kaliapani<br>Village (GW2) | 21 <sup>0</sup><br>02'39.1"N<br>85 <sup>0</sup><br>46'21.4"E   |                  | 0.024  | 0.022  | 0.014  | 0.010  | 0.018  | 0.024    |
| 3.         | Sukurangi<br>Village (GW3) | 21 <sup>0</sup> 02′<br>18.1″N<br>85 <sup>0</sup> 47′<br>41.7″E | 0.05 //          | 0.022  | 0.010  | 0.006  | 0.012  | 0.014  | 0.008    |
| 4.         | Inside Mine<br>(GW4)       | 21 <sup>0</sup><br>02'07.7"N<br>85 <sup>0</sup><br>45'32.6"E   | - 0.05 mg/l      | 0.016  | 0.016  | 0.024  | 0.036  | 0.035  | 0.026    |
| 5.         | Chingudiapal<br>(GW5)      | 21 <sup>0</sup><br>02'56.9"N<br>85 <sup>0</sup> 45'<br>04.5"E  |                  | 0.018  | 0.026  | 0.038  | 0.022  | 0.024  | 0.018    |
| 6.         | Kalarangi<br>Village (GW6) | 21 <sup>0</sup> 00′<br>47.6″N<br>85 <sup>0</sup> 43′<br>38.1″E |                  | 0.026  | 0.014  | 0.012  | 0.008  | 0.007  | 0.030    |

# Kaliapani Chromite Mines, M/s Balasore Alloys Ltd

## **Analysis Report of Surface Runoff generating at Mines**

### July,2017

| SI.<br>No | Parameters                      | Unit | Prescribed standards | SRF - 1 | SRF - 2 |
|-----------|---------------------------------|------|----------------------|---------|---------|
| 1         | рН                              | -    | 5.5-9.0              | 6.68    | 6.94    |
| 2         | Total Suspended Solids          | mg/l | 100                  | 87      | 92      |
| 3         | Chromium (as Cr <sup>+6</sup> ) | mg/l | 0.1                  | 0.072   | 0.064   |

### August,2017

| SI.<br>No | Parameters                      | Unit | Prescribed standards | SRF - 1 | SRF - 2 |
|-----------|---------------------------------|------|----------------------|---------|---------|
| 1         | рН                              | -    | 5.5-9.0              | 7.91    | 8.12    |
| 2         | Total Suspended Solids          | mg/l | 100                  | 98      | 88      |
| 3         | Chromium (as Cr <sup>+6</sup> ) | mg/l | 0.1                  | 0.084   | 0.064   |

## September,2017

| SI.<br>No | Parameters                      | Unit | Prescribed standards | SRF - 1 | SRF - 2 |
|-----------|---------------------------------|------|----------------------|---------|---------|
| 1         | рН                              | -    | 5.5-9.0              | 8.24    | 7.76    |
| 2         | Total Suspended Solids          | mg/l | 100                  | 95      | 91      |
| 3         | Chromium (as Cr <sup>+6</sup> ) | mg/l | 0.1                  | 0.062   | 0.078   |



# OFFICE OF THE STATE POLLUTION CONTROL BOARD, ODISHA

Parivesh Bhawan, A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar - 751 012

No. 181961

IND-II-NOC-5723

Date\_08-10.13

### OFFICE MEMORANDUM

In consideration of the application for obtaining Consent to Establish for Kaliapani Chromite Mines of M/s Balasore Alloys Ltd., the State Pollution Control Board has been pleased to convey its Consent to Establish under section 25 of Water (Prevention & Control of Pollution) Act, 1974 and section 21 of Air (Prevention & Control of Pollution) Act, 1981 for enhancement of production capacity of Chrome ore from 0.42 MTPA to 0.6 MTPA and Change of mining from opencast to underground mining, over mining lease hold area of 64.463 ha., At – Kaliapani, Sukinda in the district of Jajpur with the following conditions.

## **GENERAL CONDITIONS:-**

- 1. This consent to establish is valid for the product, method of mining and capacity mentioned in the application form. This order is valid for five years, which means the proponent shall commence mining activities for the proposal within a period of five years from the date of issue of this consent to establish order. If the proponent fails to commence mining activities for the proposal within five years then a renewal of this consent to establish shall be sought by the proponent.
- 2. Adequate effluent treatment facilities are to be provided such that the quality of sewage and trade effluent satisfies the standards as prescribed under Environment Protection Rule, 1986 or as prescribed by the Central Pollution Control Board and/or State Pollution Control Board or otherwise stipulated in the special conditions.
- 3. All emission from the mining activities as well as the ambient air quality and noise shall conform to the standards as laid down under Environment (Protection) Act. 1986 or as prescribed by Central Pollution Control Board/State Pollution Control Board or otherwise stipulated in the special conditions.
- 4. Appropriate method of disposal of solid waste is to be adopted to avoid environmental pollution.
- 5. The mine shall comply to the provisions of Environment Protection Act, 1986 and the rules made there under with their amendments from time to time such as the Hazardous Waste (Management, Handling & Transboundary Movement) Rules 2008, Hazardous Chemical Rules /Manufacture, Storage and Import of Hazardous Chemical

Rules, 1989 etc. and amendments there under. The mine shall also comply to the provisions of Public Liability Insurance Act, 1991, if applicable.

- 6. The mine shall apply for grant of Consent to operate under section 25/26 of Water(Prevention & Control of Pollution)Act, 1974 & Air (Prevention & Control of Pollution)Act, 1981 at least 3 (three) months before the commencement of production and obtain Consent to Operate from this Board.
- This consent to establish is subject to statutory and other clearances from Govt.
   of Odisha and/or Govt. of India, as and when applicable.

### SPECIAL CONDITIONS: -

- The proponent has to seek environmental clearance as per EIA notification 2006 and mining activity for proposal shall commence after obtaining environmental clearance.
- The mine shall treat all the mine drainage water and surface run-off in the new ETP of capacity 445 m³/hr designed as per IIT recommendation.
- The surface run-off from OB-dump-I shall be routed through ETP instead of existing practice.
- Toe wall and garland drain shall be provided around all the three dumps and surface run-off shall be routed through the ETP.
  - Present development of plantation is less, so more plantation with help of coir matting shall be carried out for slope stabilization in all the existing dumps.
  - Presently surface run-off from tailing disposal area is collected in an earthen pond. The mine shall make this pond impervious/concreted and surface run-off shall be routed to ETP.
  - 7. The mine shall explore the quantity of mine drainage water to be generated from underground mining.
  - The mine shall submit the copy of agreement from M/s IMFA for joint dumping, at the time of consent to operate application.
  - Sewage Treatment Plant shall be installed for the treatment of domestic effluent generated from the colony and mines so as to meet the prescribed standard such as pH=6.5-8.0, SS=50mg/l, BOD=30mg/l & O&G=5mg/l and shall be reused for green belt development.

- 10. No change in mining technology and scope of working shall be made without prior approval of the Board.
- 11. Top soil should be stacked properly with proper slope at earmarked site(s) with adequate measures and shall be used for reclamation and rehabilitation of mined out areas.
- 12. Dimension of the retaining wall at the toe of dumps and OB benches within the mine to check run-off and siltation shall be based on the rainfall data. The detail specification shall be worked out and submitted to the Board at the time of consent to operate application.
- 13. Reclamation programme along with the post closure plan is to be submitted within 06 months from the date of issue of this order.
- 14. Catch drains, and siltation ponds of appropriate size should be constructed to arrest silt and sediment flows from soil, OB and mineral dumps. The drains should be regularly de-silted and maintained properly. The garland drains (size, gradient and length) and sump capacity should be designed keeping 50% safety margin over and above the peak sudden rainfall and maximum discharge in the area adjoining the mine site. Sump capacity should also provide adequate retention period to allow proper settling of silt material.
- 15. The OB/waste dumps shall be properly dressed benched stopped at low angle with terracing and bamboo barricades in the slopes making retaining walls, stone barriers at the toe of the dumps gully plugging etc. to prevent the solid erosion during monsoon, besides establishing vegetation on dump top as well as its slope surface. In difficult cases, hydro-seedling technique or use of geo-tiles mat embedded with seeds shall be adopted.
- 16. Regular monitoring of ground water level and quality should be carried out by establishing a network of existing wells. The monitoring should be done four times a year in pre-monsoon (April/May), Monsoon (August), Post-monsoon(November) and winter (January) seasons. Data thus collected should be submitted to the Board quarterly. Following heavy metals need to be monitored at least once during post monsoon period whose values shall not exceed as per following standard.

i) Cd - 2.0 mg/l ii) Cr+6 - 0.10 mg/l iii) Copper - 3.0 mg/l iv) Lead - 0.10 mg/l v) Mercury - 0.01 mg/l vi) Nickel - 0.50 mg/l vii) Zinc - 5.0 mg/

- 17. Wastewater (workshop, wastewater from the mine i.e. pit water, check dams or any other discharge leaving lease boundary of the mine) should be properly collected, treated so as to conform the prescribed standard i.e. pH = 6 9.0, SS = 50 mg/l, & O & G = 5 mg/l and Cr<sup>+6</sup>= 0.1 mg/l or as amended from time to time. Oil and grease trap should be installed before discharge of effluents from workshop. Domestic effluent shall be discharged to soak pit via septic tank.
- 18. The mine shall provide full-fledged effluent treatment plant for removal of Hexavalent Chromium from wastewater from mine pit and shall discharge after conforming to the standard prescribed by the Board i.e. pH-6.0-9.0, total SS=50mg/l & O&G = 5 mg/l and  $Cr^{=6}=0.1$  mg/l.
- 19. Two ambient air quality monitoring stations for 24 hours operation should be established in the core zone as well as in the buffer zone for RPM, SPM, SO<sub>2</sub>, NO<sub>x</sub> and CO monitoring. Location of the stations should be decided based on the meteorological data, topographical features and environmentally and ecologically sensitive targets in consultation with the State Pollution Control Board (i) Data on ambient air quality (RPM, SPM, SO<sub>2</sub>, NO<sub>x</sub> and CO) should be regularly submitted to the State Pollution Control Board once in six months.
- 20. The haulage roads and arterial roads shall be made black topped / concrete with avenue plantation. The speed of dumpers / trucks on haul roads shall be controlled as increased speed increases dust emission. Overloading of transport vehicles shall be avoided. Further, during transportation of ore by trucks through public roads, the truck shall be properly covered with tarpaulin sheets / leak proof coverings and shall ply at safe speed.
- 21. Dust suppression on mine haul roads, active OB dumps and mine working benches shall be done by spraying water through water sprinklers along with chemical binders/wetting agents at frequent interval in order to reduce water consumption and to improve retention and re-absorption capacity of water. The additive chemicals should not have any adverse impact on the environment. Water sprinklers of fixed type shall also be provided at the mine HEMM maintenance shop, other service centers and approach roads from mines to crusher hopper to prevent the generation of dust to be air borne.
- 22. Regular collection of spilled over raw material from haul roads shall be practiced to prevent the generation of dust due to movement of dumpers/truck.
- 23. Air blast level resulting from blasting on any premises or public place must not exceed 90 dB linear, peak at any other premises outside the period between 7 AM and 6 PM on

- any day. Noise levels at the boundary line of M.L area shall not exceed 75 dB (A) during day time (6 AM to 10 AM) and 70 dB (A) during night time (10, PM to 6 AM).
- 24. At stockpile and loading plant area, a network of drains with concrete bottom shall be constructed at a depth of 1.5 meter below the lowest level on the sites parallel to the stockpile area with interconnected box culverts. The sloping of surface shall be given inward to the stockpiles so that surface water will only infiltrate in to the drain.
- 25. Sedimentation ponds shall be constructed at strategic points in order to guide all surface run-off water containing sediments for settlement of suspended solids before discharge of water in to natural stream/water courses during monsoon.
- 26. The waste dumps shall be located away from the natural nallas, rivers in the area and on an impervious & non-mineralized area to minimize the water pollution.
- 27. The completed out slope of the waste dumps should not exceed 20 degrees from horizontal to avoid excessive erosion and easy vegetation.
- 28. Adequate measures shall be taken to prevent land subsidence.
- 29. The mine water from the underground mine shall be monitored regularly and be treated to remove Cr<sup>+6</sup> if found more than the standard of 0.1mg/l.
- 30. A green belt of adequate width and density preferably with local species along the periphery of the mine shall be raised so as to provide protection against particulates and noise. It must be ensured that at least 33% of the total land area shall be under permanent green cover, in such a manner that, atleast plantation shall be taken up at least in 20% of the total green belt area and progressively achieve 100% in a span of five years.
- 31. Consent to operate shall be obtained from this Board before commencing the mining activities of proposed expansion project.
- 32. Environmental laboratory should be established with adequate number and type of pollution monitoring and analysis equipment in consultation with the State Pollution Control Board.
- 33. A separate environmental management cell with suitable qualified personnel should be set up under the control of a Senior Executive, who will report directly to the Head of the organization.
- 34. The Board may impose further conditions or modify the conditions stipulated in this order during installation and/or at the time of obtaining consent to operate and may revoke this clearance in case the stipulated conditions are not implemented.

35. The above conditions will be enforced, inter-allia, under the provisions of the Water (Prevention & Control of Pollution) Act, 1974 the Air (Prevention & Control of Pollution) Act, 1981 the Environment (Protection) Act, 1986 and the Public Liability Insurance Act, 1991 along with their amendments and rules.

To

MEMBER SECRETARY

The Mines Manager, Kaliapani Chromite Mines of M/s Balasore Alloys Ltd., At/Po- Kaliapani, Dist – Jajpur, Odisha-755047

Memo No.

/Dt.

Copy forwarded to:

- 1. Secretary Steels & Mines, Govt. of Odisha, Bhubaneswar
- 2. District Magistrate & Collector, Jajpur
- 3. District Industries Centre, Jajpur'
- 4. Consent Section, SPC Board, BBSR
- 5. Director, Factories & Boiler, Bhubaneswar
- 6. Director of Mines, Odisha, BBSR
- 7. Regional Officer, SPC Board, Cuttack
- 8. DFO, Jajpur
- 9. HSM Cell, SPC Board, BBSR
- 10. Copy to Guard file

SR. ENV. ENGINEER (N)



# CONSENT ORDER KALIAPANI CHROMITE MINES OF M/S. BALASORE ALLOYS LTD.

BY REGD. POST WITH AD

## STATE POLLUTION CONTROL BOARD, ODISHA

A/118, Nilakantha Nagar, Unit-VIII, Bhubaneswar-751012
Phone-2561909, Fax: 2562822, 2560955 E-mail: paribesh1@ospcboard.org, Website: www.ospcboard.org

#### **CONSENT ORDER**

No. 3749 / IND-1-CON-2576 Dt. 28/03/2018 /

#### CONSENT ORDER NO. 1239

Sub: Consent for discharge of sewage and trade effluent under section 25/26 of Water (PCP) Act, 1974 and for existing / new operation of the plant under section 21 of Air (PCP) Act, 1981.

Ref: Your online application No. 1946823 dated 26-12-2017 & your online reply dated 8.3.2018 and letter No. BAL/MINE/SPCB/4679 dated 02.01.2018

Consent to operate is hereby granted under section 25/26 of Water (Prevention & Control of Pollution) Act, 1974 and under section 21 of Air (Prevention & Control of Pollution) Act, 1981 and rules framed thereunder to

Name of the Industry: KALIAPANI CHROMITE MINES OF M/S. BALASORE ALLOYS LTD.

Name of the Occupier & Designation: SRI TARINI PRASAD MOHANTY, AGENT

Address: AT/PO: KALIAPANI, DIST: JAJPUR

This consent order is valid for the period from 01.04.2018 to 31.03.2023

This consent order is granted in view of the interim orders dated 16.1.2017 of Honourable High Court in the matter of W.P.(C) No. 4157/2016.

#### **Details of Products Manufactured**

| SI. No | Product         | Quantity |
|--------|-----------------|----------|
| 01.    | Chrome ore(ROM) | 0.6 MTPA |

### **Details of Mineral Handling/Processing Plants**

| 1 |     |                         | 4 00 TDU |
|---|-----|-------------------------|----------|
|   | 01. | COB Plant of capacity   | 1x20 TPH |
| Į | 01. | COD I failt of capacity |          |

This consent order is valid for the specified outlets, discharge quantity and quality, specified chimney/stack, emission quantity and quality of emissions as specified below. This consent is granted subject to the general and special conditions stipulated therein.

# ODISHA ODISHA

# CONSENT ORDER KALIAPANI CHROMITE MINES OF M/S. BALASORE ALLOYS LTD.

# A. Discharge permitted through the following outlet subject to the standard

| Outlet<br>No. | Description of outlet                                                  | Point of discharge                                           | Quantity<br>of<br>discharge<br>KL/hr | Pre-scribed Standard |               |        |                                          |                               |                |                                 |              |  |
|---------------|------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------|----------------------|---------------|--------|------------------------------------------|-------------------------------|----------------|---------------------------------|--------------|--|
|               |                                                                        |                                                              |                                      | рН                   | TSS<br>(mg/l) | (mg/l) | Fecal<br>Colifor<br>m<br>(MPN/1<br>00ml) | Oil &<br>Greas<br>e<br>(mg/i) | Cr+6<br>(mg/l) | Total<br>Chromi<br>um<br>(mg/l) | Fe<br>(mg/l) |  |
| 01.           | STP outlet<br>(Domestic<br>effluent)                                   | On land<br>for<br>irrigation<br>after<br>treatment<br>in STP |                                      | 6.5-<br>9.0          | <100          | 30     | <1000                                    |                               |                |                                 | •            |  |
| 02.           | Mine<br>drainage<br>water /<br>surface run<br>off/ other<br>wastewater | On land /<br>inland<br>surface<br>water<br>body              | 199                                  | 5.5<br>to<br>9.0     | 100           |        |                                          | 10                            | 0.05           | 2.0                             | 3            |  |

# B. Emission permitted through the following stack subject to the prescribed standard

| Chimney<br>Stack No. | Description of Stack | Stack<br>height<br>(m) | Quantity of emission | Prescribed<br>Standard |  |  |
|----------------------|----------------------|------------------------|----------------------|------------------------|--|--|
|                      |                      |                        |                      |                        |  |  |
|                      |                      |                        |                      |                        |  |  |

C. Disposal of solid waste permitted in the following manner

| SI. No. | Type of<br>Solid waste   | Quantity<br>generated<br>(TPD)       | Quantity to<br>be reused<br>on<br>site(TPD) | Quantity<br>to be<br>reused off<br>site(TPD) | Quantity<br>disposed off<br>(TPD) | Description of disposal site. |
|---------|--------------------------|--------------------------------------|---------------------------------------------|----------------------------------------------|-----------------------------------|-------------------------------|
| 01.     | Top soil /<br>overburden | As per<br>approved<br>mining<br>plan |                                             |                                              |                                   | As per approved mining plan   |



#### CONSENT ORDER

#### KALIAPANI CHROMITE MINES OF M/S, BALASORE ALLOYS LTD.

#### D. GENERAL CONDITIONS FOR ALL UNITS

- 1. The consent is given by the Board in consideration of the particulars given in the application. Any change or alternation or deviation made in actual practice from the particulars furnished in the application will also be the ground liable for review/variation/revocation of the consent order under section 27 of the Act of Water (Prevention & Control of Pollution) Act, 1974 and section 21 of Air (Prevention & Control of Pollution) Act, 1981 and to make such variations as deemed fit for the purpose of the Acts.
- 2. The industry would immediately submit revised application for consent to operate to this Board in the event of any change in the quantity and quality of raw material / and products / manufacturing process or quantity /quality of the effluent rate of emission / air pollution control equipment / system etc.
- The applicant shall not change or alter either the quality or quantity or the rate of discharge or temperature or the route of discharge without the
  previous written permission of the Board.
- 4. The application shall comply with and carry out the directives/orders issued by the Board in this consent order and at all subsequent times without any negligence on his part. In case of non-compliance of any order/directives issued at any time and/or violation of the terms and conditions of this consent order, the applicant shall be liable for legal action as per the provisions of the Law/Act.
- 5. The applicant shall make an application for grant of fresh consent at least 90 days before the date of expiry of this consent order.
- 6. The issuance of this consent does not convey any property right in either real or personal property or any exclusive privileges nor does it authorize any injury to private property or any invasion of personal rights, nor any infringement of Central, State laws or regulation.
- 7. This consent does not authorize or approve the construction of any physical structure or facilities or the undertaking of any work in any natural water course.
- 8. The applicant shall display this consent granted to him in a prominent place for perusal of the public and inspecting officers of this Board.
- 9. An inspection book shall be opened and made available to Board's Officers during the visit to the factory.
- 10. The applicant shall furnish to the visiting officer of the Board any information regarding the construction, installation or operation of the plant or of effluent treatment system / air pollution control system / stack monitoring system any other particulars as may be pertinent to preventing and controlling pollution of Water / Air.
- 11. Meters must be affixed at the entrance of the water supply connection so that such meters are easily accessible for inspection and maintenance and for other purposes of the Act provided that the place where it is affixed shall in no case be at a point before which water has been taped by the consumer for utilization for any purposes whatsoever.
- 12. Separate meters with necessary pipe-line for assessing the quantity of water used for each of the purposes mentioned below:
  - a) Industrial cooling, spraying in mine pits or boiler feed,
  - b) Domestic purpose
  - c) Process
- 13. The applicant shall display suitable caution board at the lace where the effluent is entering into any water-body or any other place to be indicated by the Board, indicating therein that the area into which the effluents are being discharged is not fit for the domestic use/bathing.
- 14. Storm water shall not be allowed to mix with the trade and/or domestic effluent on the upstream of the terminal manholes where the flow measuring devices will be installed.
- 15. The applicant shall maintain good house-keeping both within the factory and the premises. All pipes, valves, sewers and drains shall be leak-proof. Floor washing shall be admitted into the effluent collection system only and shall not be allowed to find their way in storm drains or open areas.
- 16. The applicant shall at all times maintain in good working order and operate as efficiently as possible all treatment or control facilities or systems install or used by him to achieve with the term(s) and conditions of the consent.
- 17. Care should be taken to keep the anaerobic lagoons, if any, biologically active and not utilized as mere stagnation ponds. The anaerobic lagoons should be fed with the required nutrients for effective digestion. Lagoons should be constructed with sides and bottom made impervious.
- 18. The utilization of treated effluent on factory's own land, if any, should be completed and there should be no possibility of the effluent gaining access into any drainage channel or other water courses either directly or by overflow.
- 19. The effluent disposal on land, if any, should be done without creating any nuisance to the surroundings or inundation of the lands at any time.
- 20. If at any time the disposal of treated effluent on land becomes incomplete or unsatisfactory or create any problem or becomes a matter of dispute, the industry must adopt alternate satisfactory treatment and disposal measures.
- 21. The sludge from treatment units shall be dried in sludge drying beds and the drained liquid shall be taken to equalization tank.
- 22. The effluent treatment units and disposal measures shall become operative at the time of commencement of production.
- 23. The applicant shall provide port holes for sampling the emissions and access platform for carrying out stack sampling and provide electrical outlet points and other arrangements for chimneys/stacks and other sources of emissions so as to collect samples of emission by the Board or the applicant at any time in accordance with the provision of the Act or Rules made therein.
- 24. The applicant shall provide all facilities and render required assistance to the Board staff for collection of samples / stack monitoring / inspection.
- 25. The applicant shall not change or alter either the quality or quantity or rate of emission or install, replace or alter the air pollution control equipment or change the raw material or manufacturing process resulting in any change in quality and/or quantity of emissions, without the previous written permission of the Board.





#### CONSENT ORDER KALIAPANI CHROMITE MINES OF M/S. BALASORE ALLOYS LTD.

- No control equipments or chimney shall be altered or replaced or as the case may be erected or re-erected except with the previous approval of the 26.
- The liquid effluent arising out of the operation of the air pollution control equipment shall be treated in the manner and to ion of standards prescribed by 27 the Board in accordance with the provisions of Water (Prevention and Control of Pollution) Act, 1974 (as amended).
- The stack monitoring system employed by the applicant shall be opened for inspection to this Board at any time. 28.
- 29 There shall not be any fugitive or episodal discharge from the premises.
- In case of such episodal discharge/emissions the industry shall take immediate action to bring down the emission within the limits prescribed by the 30. Board in conditions/stop the operation of the plant. Report of such accidental discharge /emission shall be brought to the notice of the Board within 24 hours of occurrence.
- The applicant shall keep the premises of the industrial plant and air pollution control equipments clean and make all hoods, pipes, valves, 31. stacks/chimneys leak proof. The air pollution control equipments, location, inspection chambers, sampling port holes shall be made easily accessible
- Any upset condition in any of the plant/plants of the factory which is likely to result in increased effluent discharge/emission of air pollutants and / or 32. result in violation of the standards mentioned above shall be reported to the Headquarters and Regional Office of the Board by fax / speed post within 24 hours of its occurence.
- The industry has to ensure that minimum three varieties of trees are planted at the density of not less than 1000 trees per acre. The trees may be 33. planted along boundaries of the industries or industrial premises. This plantation is stipulated over and above the bulk plantation of trees in that area.
- The solid waste such as sweeping, wastage packages, empty containers residues, sludge including that from air pollution control equipments collected within the premises of the industrial plants shall be disposed off scientifically to the satisfaction of the Board, so as no to cause fugitive emission, dust 34.
- All solid wastes arising in the premises shall be properly classified and disposed off to the satisfaction of the Board by : 35.
  - Land fill in case of inert material, care being taken to ensure that the material does not give rise to leachate which may percolate into
  - Controlled incineration, wherever possible in case of combustible organic material.
  - (iii Composting, in case of bio-degradable material.
- 36. Any toxic material shall be detoxicated if possible, otherwise be sealed in steel drums and buried in protected areas after obtaining approval of this Board in writing. The detoxication or sealing and burying shall be carried out in the presence of Board's authorized persons only. Letter of authorization shall be obtained for handling and disposal of hazardous wastes.
- If due to any technological improvement or otherwise this Board is of opinion that all or any of the conditions referred to above requires variation 37. (including the change of any control equipment either in whole or in part) this Board shall after giving the applicant an opportunity of being heard, vary all or any of such condition and thereupon the applicant shall be bound to comply with the conditions so varied.
- The applicant, his/heirs/legal representatives or assignees shall have no claim whatsoever to the condition or renewal of this consent after the expiry 38.
- The Board reserves the right to review, impose additional conditions or condition, revoke change or alter the terms and conditions of this consent. 39.
- Notwithstanding anything contained in this conditional letter of consent, the Board heraby reserves to it the right and power under section 27(2) of the 40 Water (Prevention & Control of Pollution) Act, 1974 to review any and/or all the conditions imposed herein above and to make such variations as
- The conditions imposed as above shall continue to be in force until revoked under section 27(2) of the Water (Prevention & Control of Pollution) Act, 41 1974 and section 21 A of Air (Prevention & Control of Pollution) Act, 1981.
- In case the consent fee is revised upward during this period, the industry shall pay the differential fees to the Board (for the remaining years) to keep 42. the consent order in force. If they fail to pay the amount within the period stipulated by the Board the consent order will be revoked without prior notice. 43.
- The Board reserves the right to revoke/refuse consent to operate at any time during period for which consent is granted in case any violation is observed and to modify/ stipulate additional conditions as deemed appropriate.

## GENERAL CONDITIONS FOR UNITS WITH INVESTMENT OF MORE THAN Rs 50 CRORES, AND 17 CATEGORIES OF HIGHLY POLLUTING INDUSTRIES (RED A).

- 1. The applicant shall analyse the emissions every month for the parameters indicated in TABLE .B & C as mentioned in this order and shall furnish the report thereof to the Board by the 10<sup>th</sup> of the succeeding month.
- The applicant shall provide and maintain at his own cost three ambient air quality monitoring stations for monitoring Suspended Particulate 2 Matter, Sulphor Dioxide, Oxides of Nitrogen, Hydro-Carbon, Carbon-Monixide and monitor the same once in a day/week/fortnight/month. The data collected shall be maintained in a register and a monthly extract be furnished to the Board.
- The applicant shall provide and maintain at his own cost a meteorological station to collect the data on wind velocity, direction, temperature, humidity, rainfall, etc. and the daily reading shall be recorded and the extract sent to the Board once in a month.

Page 5 of 12

# ODISHA

# CONSENT ORDER KALIAPANI CHROMITE MINES OF M/S. BALASORE ALLOYS LTD.

- 4. The applicant shall forward the following information to the Member Secretary, State Pollution Control Board, Odisha, Bhubaneswar regularly.
  - a. Report of analysis of stack monitoring, ambient air quality monitoring meteorological data as required every month.
  - b. Progress on planting of trees quarterly.
- 5. The applicant shall install mechanical composite sampling equipment and continuous flow measuring / recording devices on the effluent drains of trade as well as domestic effluent. A record of daily discharge shall be maintained.
- 6. The following information shall be forwarded to the Member Secretary on or before 10<sup>th</sup> of every month.
  - a. Performance / progress of the treatment plant.
  - b. Monthly statement of daily discharge of domestic and/or trade effluent.

#### 7. Non-compliance with effluent limitations

- a) If for any reason the applicant does not comply with or is unable to comply with any effluent limitations specified in this consent, the applicant shall immediately notify the consent issuing authority by telephone and provide the consent issuing authority with the following information in writing within 5 days of such notification.
  - i) Causes of non-compliance
  - i) A description of the non-compliance discharge including its impact on the receiving waters.
  - ii) Anticipated time of continuance of non-compliance if expected to continue or if such condition has been corrected the duration or period of non-compliance.
  - iii) Steps taken by the applicant to reduce and eliminate the non-complying discharge and
  - iv) Steps to be taken by the applicant too prevent the condition of non-compliance.
- b) The applicant shall take all reasonable steps to minimize any adverse impact to natural waters resulting from non-compliance with any effluent limitation specified in this consent including such accelerated or additional monitoring as necessary to determine the nature and impact of the non-complying discharge.
- c) Nothing in this consent shall be construed to relieve the applicant from civil or criminal penalties for non-compliance whether or not such non-compliance is due to factors beyond his control, such as break-down, electric failure, accident or natural disaster.
- The applicant shall at his own cost get the effluent samples collected both before and after treatment and get them analysed at an approval laboratory every month for the parameters indicated in Part-D and shall submit in duplicate the report thereof to the Board.
- 9. The addition of various treatment chemicals should be done only with mechanical dosers and proper equipment for regulation of correct dosages determined daily and for proper uniform feeding. Crude practices such as dumping of chemicals in drains or sumps or trickling of acids or alkalies arbitrarily and utilizing poles for stirring etc. should not be resorted to.
- 10. In the disposal of treated effluent on land for irrigation, the industry shall keep in view of the need for;

Rotation of crops

Change of point of application of effluent on land

A portion of land kept fallow

- 11. The adoption of these would avoid soil becoming sick or slate, the industry may ensure this in consultation with the Agriculture Department.
- 12. It is the sole responsibility of the industry to ensure that there are no complaints at any time from the royats in the surrounding areas as a result of discharge of sewage or trade effluent if any.
- 13. Proper housekeeping shall be maintained by a dedicated team.
- 14. The industry must constitute a team of responsible and technically qualified personnel who will ensure continuous operation of all pollution control devices round the clock (including night hours) and should be in a position to explain the status of operation of the pollution control measures to the inspecting officers of the Board at any point of time. The name of these persons with their contact telephone numbers shall be intimated to the concerned. Regional Officer and Head Office of the Board and in case of any change in the team it shall be intimated to the Board immediately.



#### E. SPECIAL CONDITIONS:

- This consent order is subject to final outcome in the matter W.P. (C) No. 4157/2016 pending at Honourable High Court of Orissa.
- Mining operation is subject to availability of all other statutory clearances required under relevant Acts/Rules.
- Wet drilling shall be practiced or suitably designed dust extractor shall be provided for dry drilling to prevent generation of dust in the work environment.
- 4) Pre-wetting of blasting site and controlled blasting shall be practiced. Blasting shall be carried out during day time.
- Water sprinkling shall also be carried out on haul roads at frequent interval so that it should always remain in wet condition. Haulage roads shall be devoid of ruts and potholes and shall be maintained properly to avoid generation of dust during movement of vehicles.
- Wheel washing facility for the ore transport vehicles shall be provided at the exit point of the mine. The wheel washing facility shall be integrated with complete recirculation system.
- 7) The vehicles carrying ore for transportation from the mine shall be covered with tarpaulin.
- Regular water sprinkling on mineral transportation roads passing through the habitation area as well as other strategic point on the National Highway shall be done jointly by the mining lessees in consultation with the Regional Officer.
- 9) Regular monitoring of ambient air quality shall be carried out at three appropriate places and consolidated monitoring report shall be furnished to the Board once in a year. The permanent monitoring stations shall be fixed in consultation with the Regional Officer of the Board.
- 10) Ambient air quality of the mine shall meet the prescribed standards for industrial area.
- 11) Wastewater generated from the ore beneficiation plant shall be completely reused.
- The slime generated from the ore beneficiation plant shall be disposed of safely as per mining plan and action shall be taken to prevent the contamination of ground water due to its disposal.
- 13) Retention wall shall be constructed at the toe of OB dump with provision of garland drain. Provision shall be made to divert the runoff from OB, ore stack yard and other areas of the mine to the ETP. Garland drains, channels and sedimentation pits constructed for the purpose shall be desilted as and when required and after monsoon

#### ODISHA TO

## CONSENT ORDER KALIAPANI CHROMITE MINES OF M/S. BALASORE ALLOYS LTD.

- 14) Mine drainage water shall be used for wet beneficiation of sub-grade ore. Excess water if any, shall be discharged into surface water body after adequate treatment in the ETP. The quality of the treated wastewater shall conform to the prescribed standard as stated in Part A(SI. no.2) of the consent order. The treated wastewater of ETP shall also be utilized for sprinkling activities at various sources of generation of dust.
- 15) The ETP and online continuous monitoring system at the inlet & outlet of ETP with data transfer facility to SPCB server shall be effectively operated and the quality of treated wastewater shall never exceed the prescribed standards(Part A, Sl. No. 2).
- 16) Domestic effluents shall be treated in a sewage treatment plant (STP). The quality of the treated wastewater from STP shall conform to the prescribed standard. (Part-A, Sl. No.1).
- 17) Oil and grease trap with sedimentation pit shall be provided for treatment of workshop effluent. The treated wastewater shall be completely recycled. The quality of the treated wastewater shall conform to the prescribed standard as stated in Part A(SI. no.2) of the consent order.
- 18) Overburden / waste rock shall be properly stacked in the earmarked areas approved by IBM and shall be suitably terraced and stabilized through vegetative cover or otherwise.
- 19) Regular monitoring of ground water level and quality should be carried out by establishing a network of existing wells. The monitoring should be done four times a year in pre-monsoon (April/May), monsoon (August), post-monsoon (November) and winter (January) seasons. Data thus collected should be submitted to the Board quarterly.
- 20) Adequate measures shall be taken for control of noise levels below 85 dB (A) in work zone.
- 21) Ambient Air Quality monitoring data, Noise Monitoring data & Water/Waste Water Quality Monitoring data shall be electronically displayed at the entry point of the mine or at a suitable location of the mine.
- 22) Plantation of trees shall be undertaken in the colony/ township, over top soil dumps, OB dumps, along the side of haul road and in other areas of the mines not being utilized for mining activities. The mine shall take up avenue plantation and plantation in nearby village areas in consultation with DFO/Horticulture Department. The plantation details shall be submitted to the Board before end of March every year.



- A copy of the annual return (annual return submitted to IBM, Govt. of India/ Directorate 23) of Mines, Govt. of Odisha) shall be submitted every year.
- The environmental statement report shall be submitted to the Board in proper format 24) every year.

MEMBER SECRETARY STATE POLLUTION CONTROL BOARD, ODISHA

TO.

SRI TARINI PRASAD MOHANTY, AGENT, KALIAPANI CHROMITE MINES OF M/S. BALASORE ALLOYS LIMITED, MODULE C1, IST FLOOR, FORTUNE TOWER, **BHUBANESWAR-23**, **ODISHA** 

| Memo No  | Dt/                                                                                       |
|----------|-------------------------------------------------------------------------------------------|
| Copy for | varded to :                                                                               |
| i)       | Regional Officer, State Pollution Control Board, Kalinganagar                             |
| ii)      | District Collector, Jajpur                                                                |
| iii)     | Director of Mines, Govt. of Odisha, Bhubaneswar,                                          |
| iv)      | Director, Environment -cum-Special Secretary, F & E. Deptt. Govt. of Odisha, Bhubaneswar. |
| v)       | D.F.O Cuttack                                                                             |
| vi)      | Deputy Director of Mines, Jaipur Road                                                     |

- vii) Sr. Env. Engineer-L-I (C) (Hazardous waste cell)
- Sr. Env. Scientist -L-I (L), Central Lab. SPCB, Bhubaneswar viii)
- Consent Register ix)

SR. ENV. ENGINEER (L-I) STATE POLLUTION CONTROL BOARD, ODISHA



# GENERAL STANDARDS FOR DISCHARGE OF ENVIRONMENTAL POLLUTANTS



## GENERAL STANDARDS FOR DISCHARGE OF ENVIRONMENTAL POLLUTANTS PART -A: EFFLUENTS

| SI.No. | Parameters                                                  |                                                            |                  | Standards           |                                                                                                        |
|--------|-------------------------------------------------------------|------------------------------------------------------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------|
|        |                                                             | Inland surface                                             | Public<br>sewers | Land for irrigation | Marine Costal Areas                                                                                    |
|        |                                                             | (a)                                                        | (b)              | (c)                 | (d)                                                                                                    |
| 1.     | Colour&odour                                                | Colourless/Odou<br>rless as far as<br>practible            |                  | See 6 of<br>Annex-1 | See 6 of Annex-1                                                                                       |
| 2.     | Suspended Solids (mg/l)                                     | 100                                                        | 600              | 200                 | For process wastewater 100 b. For cooling water effluent 10% above total suspended matter of influent. |
| 3.     | Particular size of SS                                       | Shall pass 850                                             |                  |                     |                                                                                                        |
| 5.     | pH value                                                    | 5.5 to 9.0                                                 | 5.5 to 9.0       | 5.5 to 9.0          | 5.5 to 9.0                                                                                             |
| 6.     | Temperature                                                 | Shall not exceed 5°C above the receiving water temperature |                  |                     | Shall not exceed 5°C above the receiving water temperature                                             |
| 7.     | Oil & Grease mg/l max.                                      | 10                                                         | 20               | 10                  | 20                                                                                                     |
| 8.     | Total residual chlorine                                     | 1.0                                                        |                  | ** ** ** **         | 1.0                                                                                                    |
| 9.     | Ammonical nitrogen (as N) mg/l max.                         | 50                                                         | 50               |                     | 50                                                                                                     |
| 10.    | Total Kajeldahl nitrogen (as NH <sub>3</sub> ) mg/1 max.    | 100                                                        |                  |                     | 100                                                                                                    |
| 11.    | Free ammonia (as NH <sub>3</sub> ) mg/1 max.                | 5.0                                                        |                  |                     | 5.0                                                                                                    |
| 12.    | Biochemical Oxygen<br>Demand (5 days at<br>(20°C) mg/1 max. | 30                                                         | 350              | 100                 | 100                                                                                                    |
| 13.    | Chemical Oxygen<br>Demand, mg/1 max.                        | 250                                                        |                  |                     | 250                                                                                                    |
| 14.    | Arsenic (as As) mg/1 max.                                   | 0.2                                                        | 0.2              | 0.2                 | 0.2                                                                                                    |
| 15.    | Mercury (as Hg) mg/1<br>max.                                | 0.01                                                       | 0.01             |                     | 0.001                                                                                                  |
| 16.    | Lead (as pb) mg/1 max.                                      | 01.                                                        | 1.0              |                     | 2.0                                                                                                    |



| 17. | Cardmium (as Cd) mg/1 max.                                                              | 2.0                                                           | 1.0                                                              |                                                                  | 2.0                                                     |
|-----|-----------------------------------------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|
| 18. | Hexavalent Chromium (as Cr + 6) mg/l max.                                               | 0.1                                                           | 2.0                                                              |                                                                  | 1.0                                                     |
| 19. | Total Chromium (as Cr) mg/l max.                                                        | 2.0                                                           | 2.0                                                              |                                                                  | 2.0                                                     |
| 20. | Copper (as Cu) mg/l max.                                                                | 3.0                                                           | 3.0                                                              |                                                                  | 3.0                                                     |
| 21. | Zinc (as Zn) mg/l max.                                                                  | 5.0                                                           | 15                                                               |                                                                  | 15                                                      |
| 22. | Selenium (as Sc) mg/l max.                                                              | 0.05                                                          | 0.05                                                             |                                                                  | 0.05                                                    |
| 23. | Nickel (as Nil) mg/l max.                                                               | 3.0                                                           | 3.0                                                              |                                                                  | 5.0                                                     |
| 24. | Cyanide (as CN) mg/l max.                                                               | 0.2                                                           | 2.0                                                              | 0.2                                                              | 0.02                                                    |
| 25. | Fluoride ( as F) mg/l max.                                                              | 2.0                                                           | 15                                                               |                                                                  | 15                                                      |
| 26. | Dissolved Phosphates (as P) mg/l max.                                                   | 5.0                                                           |                                                                  |                                                                  |                                                         |
| 27. | Sulphide (as S) mg/l max.                                                               | 2.0                                                           |                                                                  |                                                                  | 5.0                                                     |
| 28. | Phennolic compounds as (C <sub>6</sub> H <sub>5</sub> OH) mg/l max.                     | 1.0                                                           | 5.0                                                              |                                                                  | 5.0                                                     |
| 29. | Radioactive materials  a. Alpha emitter micro curle/ml. b. Beta emitter micro curle/ml. | 10 <sup>7</sup>                                               | 10 <sup>7</sup>                                                  | 10 <sup>8</sup>                                                  | 10 <sup>7</sup><br>10 <sup>6</sup>                      |
| 30. | Bio-assay test                                                                          | 90% survival of<br>fish after 96<br>hours in 100%<br>effluent | 90% survival<br>of fish after<br>96 hours in<br>100%<br>effluent | 90% survival<br>of fish after<br>96 hours in<br>100%<br>effluent | 90% survival of fish after<br>96 hours in 100% effluent |
| 31  | Manganese (as Mn)                                                                       | 2 mg/l                                                        | 2 mg/l                                                           |                                                                  | 2 mg/l                                                  |
| 32. | Iron (Fe)                                                                               | 3 mg/l                                                        | 3 mg/l                                                           |                                                                  | 3 mg/l                                                  |
| 33. | Vanadium (as V)                                                                         | 0.2 mg/l                                                      | 0.2 mg/l                                                         |                                                                  | 0.2 mg/l                                                |
| 34. | Nitrate Nitrogen                                                                        | 10 mg/l                                                       |                                                                  |                                                                  | 20 mg/l                                                 |



NATIONAL AMBIENT AIR QUALITY STANDARDS

| SI.<br>No. | Pollutants                                                 | Time               |                                                       | Concentrate of                                               | of Ambient Air                                                                                    |
|------------|------------------------------------------------------------|--------------------|-------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| NO.        |                                                            | Weighed<br>Average | Industrial<br>Residential,<br>Rural and<br>other Area | Ecologically Sensitive Area (notified by Central Government) | Methods of Measurement                                                                            |
| (1)        | (2)                                                        | (3)                | (4)                                                   | (5)                                                          | (6)                                                                                               |
| 1.         | Sulphur Dioxide (SO <sub>2</sub> ), µg/m <sup>3</sup>      | Annual *           | 50                                                    | 20                                                           | -Improved west and Gaeke                                                                          |
|            |                                                            | 24 Hours **        | 80                                                    | 80                                                           | - Ultraviolet fluorescence                                                                        |
| 2.         | Nitrogen Dioxide (NO <sub>2</sub> ), μg/m <sup>3</sup>     | Annual *           | 40                                                    | 30                                                           | <ul> <li>Modified Jacob &amp; Hochheiser (<br/>Na-Arsenite)</li> </ul>                            |
|            |                                                            | 24 Hours **        | 80                                                    | 80                                                           | - Chemiluminescence                                                                               |
| 3.         | Particulate Matter (size less than 10μm)                   | Annual *           | 60                                                    | 60                                                           | -Gravimetric<br>- TOEM                                                                            |
|            | or PM <sub>10</sub> μg/m³                                  | 24 Hours **        | 100                                                   | 100                                                          | - Beta Attenuation                                                                                |
| 4.         | Particulate Matter (size less than 2.5μm)                  | Annual *           | 40                                                    | 40                                                           | -Gravimetric<br>- TOEM                                                                            |
|            | or PM <sub>2.5</sub> μg/m <sup>3</sup>                     | 24 Hours **        | 60                                                    | 60                                                           | - Beta Attenuation                                                                                |
| 5.         | Ozone (O <sub>3</sub> ) μg/m <sup>3</sup>                  | 8 Hours **         | 100                                                   | 100                                                          | - UV Photometric<br>- Chemiluminescence                                                           |
|            |                                                            | 1 Hours **         | 180                                                   | 180                                                          | - Chemical Method                                                                                 |
| 6.         | Lead (Pb) μg/m³                                            | Annual *           | 0.50                                                  | 0.50                                                         | -AAS/ICP method after sampling on EMP 2000 or equivalent filter                                   |
|            |                                                            | 24 Hours **        | 1.0                                                   | 1.0                                                          | paper.<br>- ED-XRF using Teflon filter                                                            |
| 7.         | Carbon Monoxide<br>(CO) mg/m³                              | 8 Hours **         | 02                                                    | 02                                                           | - Non Dispersive Infra Red<br>(NDIR)                                                              |
|            |                                                            | 1 Hours **         | 04                                                    | 04                                                           | Spectroscopy                                                                                      |
| 8.         | Ammonia (NH <sub>3</sub> ) μg/m <sup>3</sup>               | Annual*            | 100                                                   | 100                                                          | -Chemiluminescence<br>- Indophenol Blue Method                                                    |
|            |                                                            | 24 Hours**         | 400                                                   | 400                                                          |                                                                                                   |
| 9.         | Benzene (C <sub>6</sub> H <sub>6</sub> ) μg/m <sup>3</sup> | Annul *            | 05                                                    | 05                                                           | -Gas Chromatography based continuous analyzer - Adsorption and Desorption followed by GC analysis |
| 10.        | Benzo (a) Pyrene<br>(BaP)-Particulate<br>phase only, ng/m³ | Annual*            | 01                                                    | 01                                                           | -Solvent extraction followed by HPLC/GC analysis                                                  |
| 11.        | Arsenic (As), ng/m <sup>3</sup>                            | Annual*            | 06                                                    | 06                                                           | -AAS/ICP method after sampling on EPM 2000 or equivalent filter paper                             |
| 12.        | Nickel (Ni),ng/m <sup>3</sup>                              | Annual*            | 20                                                    | 20                                                           | -AAS/ICP method after sampling on EPM 2000 or equivalent filter paper                             |

<sup>\*\*</sup> Annual arithmetic mean of minimum I04 measurements in a year at a particular site taken twice a week 24 hourly at uniform intervals.

<sup>\*\* 24</sup> hourly or 08 hourly or 0I hourly monitored values, as applicable, shall be complied with 98% of the time in a year, 2% of the time, they may exceed the limits but not on two consecutive days of monitoring.

Annexure: VII

|                 |                                          |                      | Kalia                 | apani (          | Chromi           | te Mine           | es               |                      |                       |                      |
|-----------------|------------------------------------------|----------------------|-----------------------|------------------|------------------|-------------------|------------------|----------------------|-----------------------|----------------------|
|                 |                                          |                      | Traffi                | c Dens           | ity Stu          | dy Rep            | ort              |                      |                       |                      |
| Statio<br>n     |                                          | Working              | Days                  |                  | Non              | Working I         | Days             | N                    | larket Da             | ys                   |
|                 | Result                                   | Light<br>Vehicl<br>e | Mediu<br>m<br>Vehicle | Heavy<br>Vehicle | Light<br>Vehicle | Medium<br>Vehicle | Heavy<br>Vehicle | Light<br>Vehicl<br>e | Mediu<br>m<br>Vehicle | Heavy<br>Vehicl<br>e |
| ĭ               | Total Nos                                | 1507                 | 566                   | 560              | 1019             | 341               | 306              | 2506                 | 944                   | 541                  |
| ies ma          | Avg Traffic<br>Load/Hr                   | 62.79                | 23.58                 | 23.33            | 42.45            | 14.2              | 12.75            | 104.4<br>1           | 39.33                 | 22.54                |
| Mines main Gate | Passenger<br>Car<br>Unit(PCU)<br>Factor  | 0.75                 | 2                     | 3.7              | 0.75             | 2                 | 3.7              | 0.75                 | 2                     | 3.7                  |
|                 | PCU/Hr                                   | 47.09                | 47.16                 | 86.33            | 31.84            | 28.41             | 47.17            | 78.31                | 78.66                 | 83.40                |
|                 | Total Nos                                | 878                  | 379                   | 455              | 950              | 418               | 265              | 2363                 | 934                   | 345                  |
| Kaları          | Avg Traffic<br>Load/Hr                   | 36.58                | 15.79                 | 18.95            | 39.58            | 17.41             | 11.04            | 98.45                | 38.91                 | 14.37                |
| Kalarngiatta    | Passenger<br>Car<br>Unit(PCU)<br>Factor  | 0.75                 | 2                     | 3.7              | 0.75             | 2                 | 3.7              | 0.75                 | 2                     | 3.7                  |
|                 | PCU/Hr                                   | 27.43                | 31.58                 | 70.14            | 29.68            | 34.83             | 40.85            | 73.84                | 77.83                 | 53.18                |
|                 | Total Nos                                | 878                  | 379                   | 455              | 745              | 278               | 193              | 1374                 | 328                   | 309                  |
| _               | Avg Traffic<br>Load/Hr                   | 36.58                | 15.79                 | 18.95            | 31.04            | 11.58             | 8.04             | 57.25                | 13.66                 | 12.87                |
| Kansa           | Passenger<br>Car Unit<br>(PCU)<br>Factor | 0.75                 | 2                     | 3.7              | 0.75             | 2                 | 3.7              | 0.75                 | 2                     | 3.7                  |
|                 | PCU/Hr                                   | 27.43                | 31.58                 | 70.14            | 23.28            | 23.16             | 29.75            | 42.93                | 27.33                 | 47.63                |

|             |             |                                       | Statio                                 | on Code                  | : AAQ – 1                            | Offic       | e Area (21                       | <sup>0</sup> 02'04.                  | 7"N, 85 <sup>0</sup>                               | 45′ 31.0     | O"E)        |             |                 |
|-------------|-------------|---------------------------------------|----------------------------------------|--------------------------|--------------------------------------|-------------|----------------------------------|--------------------------------------|----------------------------------------------------|--------------|-------------|-------------|-----------------|
|             |             | PM <sub>10</sub><br>μg/m <sup>3</sup> | PM <sub>2.5</sub><br>μg/m <sup>3</sup> | SO <sub>2</sub><br>μg/m³ | NO <sub>2</sub><br>μg/m <sup>3</sup> | CO<br>μg/m³ | O <sub>3</sub> μg/m <sup>3</sup> | NH <sub>3</sub><br>μg/m <sup>3</sup> | C <sub>6</sub> H <sub>6</sub><br>μg/m <sup>3</sup> | Bap<br>ng/m³ | Pb<br>μg/m³ | Ni<br>ng/m³ | As<br>ng/m<br>3 |
| Octob       | Averag<br>e | 55.25                                 | 27.25                                  | 6.02                     | 13.31                                | 0.4         | 5.5                              | BDL                                  | 0.49                                               | BDL          | 0.000224    | BDL         | BDL             |
| er,17       | Min         | 47                                    | 18                                     | 4.8                      | 11.7                                 | 0.2         | 4.6                              | BDL                                  | 0.37                                               | BDL          | 0.00016     | BDL         | BDL             |
|             | Max         | 82                                    | 35                                     | 7.9                      | 16.8                                 | 0.6         | 6.2                              | BDL                                  | 0.6                                                | BDL          | 0.00028     | BDL         | BDL             |
|             | Averag<br>e | 52.88                                 | 28                                     | 6                        | 12.7                                 | 0.4         | 4.44                             | BDL                                  | 0.45                                               | BDL          | 0.000186    | BDL         | BDL             |
| Nove,<br>17 | Min         | 40                                    | 17                                     | 4.6                      | 10.5                                 | 0.2         | 4.1                              | BDL                                  | 0.36                                               | BDL          | 0.0001      | BDL         | BDL             |
|             | Max         | 88                                    | 35                                     | 7.3                      | 15.5                                 | 0.6         | 4.8                              | BDL                                  | 0.59                                               | BDL          | 0.00025     | BDL         | BDL             |
|             | Averag<br>e | 58                                    | 27.75                                  | 6.22                     | 13.07                                | 0.36        | 4.525                            | BDL                                  | 0.47                                               | BDL          | 0.000225    | BDL         | BDL             |
| Dec,1<br>7  | Min         | 48                                    | 22                                     | 5.4                      | 10.8                                 | 0.2         | 3.7                              | BDL                                  | 0.32                                               | BDL          | 0.00018     | BDL         | BDL             |
|             | Max         | 81                                    | 36                                     | 7.2                      | 15.8                                 | 0.6         | 5.3                              | BDL                                  | 0.64                                               | BDL          | 0.00027     | BDL         | BDL             |
|             | Averag<br>e | 54.55                                 | 28.22                                  | 6.57                     | 12.4                                 | 0.28        | 5.36                             | BDL                                  | 0.453                                              | BDL          | 0.000229    | BDL         | BDL             |
| Jan,18      | Min         | 46                                    | 20                                     | 5.1                      | 10.2                                 | 0.2         | 4.4                              | BDL                                  | 0.3                                                | BDL          | 0.00016     | BDL         | BDL             |

|              | Max         | 83    | 40      | 8.2    | 15.3    | 0.4     | 6.5         | BDL                  | 0.61       | BDL                  | 0.00028  | BDL | BDL |
|--------------|-------------|-------|---------|--------|---------|---------|-------------|----------------------|------------|----------------------|----------|-----|-----|
|              | Averag<br>e | 54    | 27.87   | 7.08   | 12.08   | 0.3     | 5.075       | BDL                  | 0.44       | BDL                  | 0.000218 | BDL | BDL |
| Feb,1<br>8   | Min         | 44    | 21      | 6.3    | 9.7     | 0.1     | 4.1         | BDL                  | 0.33       | BDL                  | 0.00018  | BDL | BDL |
| 8            | Max         | 79    | 33      | 7.9    | 15.8    | 0.5     | 5.9         | BDL                  | 0.53       | BDL                  | 0.00026  | BDL | BDL |
|              | Averag<br>e | 57    | 24.7    |        |         |         |             | BDL                  |            | BDL                  | BDL      | BDL | BDL |
| March<br>,18 | Min         | 47    | 22      | 7.2    | 13.4    | 0.1     | 5           | BDL                  | 0.33       | BDL                  | BDL      | BDL | BDL |
| ,10          | Max         | 90    | 38      | 10.2   | 16.8    | 1       | 6.2         | BDL                  | 0.51       | BDL                  | BDL      | BDL | BDL |
|              |             |       | Station | Code : | 4AQ – 2 | Bachelo | r Barrack ( | 21 <sup>0</sup> 02'0 | 05.7"N, 8! | 5 <sup>0</sup> 45′ 3 | 4.2"E)   |     |     |
|              | Avera<br>ge | 52.87 | 26.5    | 6.21   | 12.86   | 0.36    | 5.47        | BDL                  | 0.47       | BDL                  | 0.000203 | BDL | BDL |
| Oct,1<br>7   | Min         | 42    | 20      | 5.1    | 10.1    | 0.2     | 4.2         | BDL                  | 0.27       | BDL                  | 0.00015  | BDL | BDL |
| ,            | Max         | 77    | 36      | 8.2    | 15.9    | 0.6     | 7.1         | BDL                  | 0.68       | BDL                  | 0.00025  | BDL | BDL |
|              | Averag<br>e | 58.33 | 29.88   | 6.46   | 12.26   | 0.48    | 4.38        | BDL                  | BDL        | BDL                  | BDL      | BDL | BDL |
| Nove,<br>17  | Min         | 49    | 25      | 5.1    | 10.4    | 0.2     | 4           | BDL                  | BDL        | BDL                  | BDL      | BDL | BDL |
|              | Max         | 86    | 36      | 7.7    | 14.2    | 0.8     | 4.8         | BDL                  | BDL        | BDL                  | BDL      | BDL | BDL |
|              | Averag<br>e | 51.62 | 32.12   | 6.33   | 13.81   | 0.55    | 5.23        | BDL                  | 0.52       | BDL                  | 0.000216 | BDL | BDL |
| Dec,1<br>7   | Min         | 51    | 25      | 5.3    | 11.8    | 0.4     | 3.9         | BDL                  | 0.34       | BDL                  | 0.00016  | BDL | BDL |
|              | Max         | 87    | 43      | 7.4    | 16.2    | 0.8     | 6.5         | BDL                  | 0.66       | BDL                  | 0.00026  | BDL | BDL |
|              | Averag      | 67.44 | 29.33   | 6.65   | 13.18   | 0.4     | 5.025       | BDL                  | 0.49       | BDL                  | 0.000229 | BDL | BDL |

| Jan,18      | е           |        |       |         |         |       |            |        |                      |          |          |     |     |
|-------------|-------------|--------|-------|---------|---------|-------|------------|--------|----------------------|----------|----------|-----|-----|
|             | Min         | 57     | 21    | 5.3     | 10.5    | 0.2   | 3.6        | BDL    | 0.36                 | BDL      | 0.00019  | BDL | BDL |
|             | Max         | 81     | 35    | 7.5     | 15.8    | 0.6   | 6.8        | BDL    | 0.65                 | BDL      | 0.00027  | BDL | BDL |
| Feb,1       | Averag<br>e | 58.125 | 29.37 | 6.78    | 13.41   | 0.475 | 5.27       | BDL    | 0.49                 | BDL      | 0.000221 | BDL | BDL |
| 8           | Min         | 45     | 25    | 6.1     | 11.1    | 0.2   | 4.1        | BDL    | 0.33                 | BDL      | 0.00019  | BDL | BDL |
|             | Max         | 79     | 33    | 7.5     | 16      | 0.9   | 6.2        | BDL    | 0.59                 | BDL      | 0.00026  | BDL | BDL |
|             | Averag<br>e | 59.1   | 24    |         |         |       |            | BDL    |                      | BDL      | BDL      | BDL | BDL |
| March       | Min         | 55     | 22    | 7.0     | 12.2    | BDL   | BDL        | BDL    | 0.44                 | BDL      | BDL      | BDL | BDL |
| ,18         | Max         | 94     | 41    | 11.2    | 18.4    | 1.0   | 6.1        | BDL    | 0.66                 | BDL      | BDL      | BDL | BDL |
|             |             |        | Stati | on Code | : AAQ – | 3 (   | Quarry (21 | 01'57. | 8"N, 85 <sup>0</sup> | 46' 01.2 | 2"E)     |     |     |
| Octob       | Averag<br>e | 58.37  | 28    | 6.66    | 13.45   | 0.467 | 5.95       | BDL    | 0.53                 | BDL      | 0.000241 | BDL | BDL |
| er,17       | Min         | 53     | 19    | 5.6     | 11.4    | 0.4   | 5.1        | BDL    | 0.44                 | BDL      | 0.00019  | BDL | BDL |
|             | Max         | 80     | 37    | 7.8     | 15.9    | 0.6   | 6.6        | BDL    | 0.67                 | BDL      | 0.00028  | BDL | BDL |
|             | Averag<br>e | 58.89  | 31.44 | 6.53    | 13.53   | 0.5   | 4.92       | BDL    | 0.53                 | BDL      | 0.000259 | BDL | BDL |
| Nove,<br>17 | Min         | 42     | 27    | 5.2     | 11.3    | 0.4   | 4.4        | BDL    | 0.4                  | BDL      | 0.00018  | BDL | BDL |
|             | Max         | 89     | 37    | 7.9     | 14.9    | 0.6   | 6.4        | BDL    | 0.62                 | BDL      | 0.00032  | BDL | BDL |

|                |             |       | 1          |          |         | I       |               | I       | 1           |                     | T        |     |     |
|----------------|-------------|-------|------------|----------|---------|---------|---------------|---------|-------------|---------------------|----------|-----|-----|
| Dec,1          | Averag<br>e | 53.37 | 30.25      | 6.9      | 14.15   | 0.5     | 4.73          | BDL     | 0.49        | BDL                 | 0.000243 | BDL | BDL |
| 7              | Min         | 48    | 27         | 5.9      | 12.5    | 0.2     | 3.6           | BDL     | 0.35        | BDL                 | 0.0002   | BDL | BDL |
|                | Max         | 82    | 35         | 7.8      | 16      | 0.8     | 6.1           | BDL     | 0.62        | BDL                 | 0.00029  | BDL | BDL |
|                | Averag<br>e | 53.22 | 33.11      | 6.66     | 13.22   | 0.37    | 5.1           | BDL     | 0.46        | BDL                 | 0.000228 | BDL | BDL |
| Jan,18         | Min         | 49    | 24         | 5.1      | 10.6    | 0.2     | 3.6           | BDL     | 0.32        | BDL                 | 0.00017  | BDL | BDL |
| ,              | Max         | 92    | 43         | 7.2      | 15.2    | 0.8     | 6.3           | BDL     | 0.69        | BDL                 | 0.00028  | BDL | BDL |
|                | Averag<br>e | 59    | 31.87<br>5 | 6.1375   | 12.9    | 0.44    | 5.34          | BDL     | 0.4637<br>5 | BDL                 | 0.000246 | BDL | BDL |
| Feb,1<br>8     | Min         | 46    | 24         | 5.1      | 11.3    | 0.3     | 4.4           | BDL     | 0.36        | BDL                 | 0.00021  | BDL | BDL |
|                | Max         | 86    | 44         | 6.9      | 16.2    | 0.7     | 6.3           | BDL     | 0.59        | BDL                 | 0.00028  | BDL | BDL |
|                | Averag<br>e | 50.1  | 42.8       | 10.1     | 17.4    | 0.9     | 0.8           | BDL     |             | BDL                 | BDL      | BDL | BDL |
| March<br>,18   | Min         | 50    | 42         | 9.2      | 15.3    | BDL     | BDL           | BDL     | 0.32        | BDL                 | BDL      | BDL | BDL |
| ,10            | Max         | 93    | 29         | 15.2     | 24.2    | 1       | 7.8           | BDL     | 0.62        | BDL                 | BDL      | BDL | BDL |
|                |             |       | Statio     | n Code : | AAQ – 4 | Kaliapa | ni Village (2 | 1° 03'4 | 2.0"N, 85   | <sup>u</sup> 46' 19 | ).3"E)   |     |     |
| Octob<br>er,17 | Averag<br>e | 59.37 | 23.5       | 5.65     | 12.67   | BDL     | BDL           | BDL     | 0.4975      | BDL                 | 0.000205 | BDL | BDL |

|             | Min         | 47    | 17    | 4.9   | 10.8  | BDL | BDL | BDL | 0.32 | BDL | 0.00014  | BDL | BDL |
|-------------|-------------|-------|-------|-------|-------|-----|-----|-----|------|-----|----------|-----|-----|
|             | Max         | 73    | 35    | 7.1   | 15.6  | BDL | BDL | BDL | 0.69 | BDL | 0.00027  | BDL | BDL |
|             | Averag<br>e | 55.89 | 24.22 | 6.17  | 11.18 | BDL | BDL | BDL | 0.45 | BDL | 0.00018  | BDL | BDL |
| Nove,<br>17 | Min         | 46    | 17    | 5     | 10    | BDL | BDL | BDL | 0.34 | BDL | 0.00008  | BDL | BDL |
|             | Max         | 74    | 32    | 7.8   | 14.3  | BDL | BDL | BDL | 0.58 | BDL | 0.00025  | BDL | BDL |
| Dec,1       | Averag<br>e | 52.87 | 25.35 | 5.68  | 11.51 | BDL | BDL | BDL | 0.41 | BDL | 0.000183 | BDL | BDL |
| 7           | Min         | 50    | 19    | 4.9   | 9.6   | BDL | BDL | BDL | 0.26 | BDL | 0.00008  | BDL | BDL |
|             | Max         | 77    | 33    | 6.8   | 13.9  | BDL | BDL | BDL | 0.63 | BDL | 0.00025  | BDL | BDL |
|             | Averag<br>e | 54.44 | 27.33 | 5.65  | 12    | BDL | BDL | BDL | 0.43 | BDL | 0.000222 | BDL | BDL |
| Jan,18      | Min         | 45    | 21    | 4.8   | 10.5  | BDL | BDL | BDL | 0.26 | BDL | 0.00017  | BDL | BDL |
|             | Max         | 78    | 35    | 7.5   | 14.1  | BDL | BDL | BDL | 0.58 | BDL | 0.00029  | BDL | BDL |
| Fob 1       | Averag<br>e | 54    | 26.87 | 5.675 | 12.7  | BDL | BDL | BDL | 0.35 | BDL | 0.000235 | BDL | BDL |
| Feb,1<br>8  | Min         | 48    | 21    | 4.7   | 11.8  | BDL | BDL | BDL | 0.28 | BDL | 0.00019  | BDL | BDL |
|             | Max         | 78    | 33    | 6.3   | 13.8  | BDL | BDL | BDL | 0.54 | BDL | 0.00029  | BDL | BDL |
| March       | Averag<br>e | 52.4  | 21.4  | 6.2   | 12.4  | BDL | BDL | BDL | BDL  | BDL | BDL      | BDL | BDL |

| ,18         | Min         | 44    | 18    | 5.4     | 10.4      | BDL   | BDL         | BDL                 | BDL                   | BDL      | BDL      | BDL | BDL |
|-------------|-------------|-------|-------|---------|-----------|-------|-------------|---------------------|-----------------------|----------|----------|-----|-----|
|             | Max         | 66    | 28    | 8.8     | 15.2      | BDL   | BDL         | BDL                 | BDL                   | BDL      | BDL      | BDL | BDL |
|             |             |       | Stati | on Code | : AAQ – 5 | Ranso | Village (21 | <sup>0</sup> 03'43. | .1"N, 85 <sup>0</sup> | 44′ 32.2 | 2"E)     |     |     |
| Octob       | Averag<br>e | 53.87 | 22.87 | 5.2     | 11.82     | 0.4   | 4.65        | BDL                 | 0.49                  | BDL      | 0.000223 | BDL | BDL |
| er,17       | Min         | 43    | 18    | 4.6     | 10.1      | 0.4   | 4.2         | BDL                 | 0.3                   | BDL      | 0.00016  | BDL | BDL |
|             | Max         | 74    | 27    | 5.8     | 13.1      | 0.4   | 5.1         | BDL                 | 0.63                  | BDL      | 0.00028  | BDL | BDL |
|             | Averag<br>e | 50.66 | 22.33 | 5.8     | 10.55     | 0.4   | 4.3         | BDL                 | 0.47                  | BDL      | 0.000197 | BDL | BDL |
| Nove,<br>17 | Min         | 42    | 18    | 5.3     | 9.8       | 0.4   | 4.2         | BDL                 | 0.36                  | BDL      | 0.00014  | BDL | BDL |
|             | Max         | 70    | 29    | 6.4     | 11.5      | 0.4   | 4.4         | BDL                 | 0.55                  | BDL      | 0.00028  | BDL | BDL |
| Dec,1       | Averag<br>e | 56.75 | 24.12 | 5.58    | 11.82     | BDL   | BDL         | BDL                 | 0.39                  | BDL      | 0.000213 | BDL | BDL |
| 7           | Min         | 46    | 19    | 4.8     | 10.5      | BDL   | BDL         | BDL                 | 0.25                  | BDL      | 0.00015  | BDL | BDL |
|             | Max         | 72    | 34    | 6.7     | 13.4      | BDL   | BDL         | BDL                 | 0.63                  | BDL      | 0.00028  | BDL | BDL |
|             | Averag<br>e | 53.77 | 26.33 | 5.425   | 12.21     | BDL   | BDL         | BDL                 | 0.416                 | BDL      | 0.000236 | BDL | BDL |
| Jan,18      | Min         | 46    | 17    | 4.7     | 10.4      | BDL   | BDL         | BDL                 | 0.21                  | BDL      | 0.00017  | BDL | BDL |
|             | Max         | 73    | 34    | 5.8     | 13.4      | BDL   | BDL         | BDL                 | 0.56                  | BDL      | 0.00028  | BDL | BDL |

|            | ·           |       | 1         | T        | T         | T.       |                       | T.       | T                     |          | 1         | 1   |     |
|------------|-------------|-------|-----------|----------|-----------|----------|-----------------------|----------|-----------------------|----------|-----------|-----|-----|
| Fab 1      | Averag<br>e | 51.75 | 26.37     | 5.325    | 11.51     | BDL      | BDL                   | BDL      | 0.43                  | BDL      | 0.000248  | BDL | BDI |
| Feb,1<br>8 | Min         | 43    | 19        | 4.9      | 10.4      | BDL      | BDL                   | BDL      | 0.29                  | BDL      | 0.00016   | BDL | BDI |
|            | Max         | 79    | 37        | 5.8      | 12.8      | BDL      | BDL                   | BDL      | 0.58                  | BDL      | 0.00029   | BDL | BDL |
|            | Averag<br>e | 46.2  | 18.9      | 6.8      | 13.7      | BDL      | BDL                   | BDL      | BDL                   | BDL      | BDL       | BDL | BDL |
| March      | Min         | 43    | 15        | 5.6      | 11.4      | BDL      | BDL                   | BDL      | BDL                   | BDL      | BDL       | BDL | BDI |
| ,18        | Max         | 61    | 29        | 7.2      | 14.1      | BDL      | BDL                   | BDL      | BDL                   | BDL      | BDL       | BDL | BDI |
|            |             |       | Station ( | Code: AA | Q – 6 Sul | rangi Vi | lage (21 <sup>0</sup> | 02'44.5" | N, 85 <sup>0</sup> 48 | ' 16.3"I | <b>E)</b> | ·   |     |
| Octob      | Averag<br>e | 55.5  | 27.87     | 6.51     | 12.68     | 0.2      | 4.75                  | BDL      | 0.48                  | BDL      | 0.000219  | BDL | BDL |
| er,17      | Min         | 48    | 18        | 5.6      | 10.2      | 0.2      | 4.1                   | BDL      | 0.31                  | BDL      | 0.00014   | BDL | BDL |
|            | Max         | 48    | 18        | 5.6      | 10.2      | 0.2      | 4.1                   | BDL      | 0.31                  | BDL      | 0.00027   | BDL | BDL |
|            | Averag<br>e | 50.22 | 27.33     | 5.73     | 12.74     | 0.33     | 4.16                  | BDL      | 0.44                  | BDL      | 0.00021   | BDL | BDL |
| Nove,      | Min         | 41    | 19        | 5.1      | 10.1      | 0.2      | 4                     | BDL      | 0.32                  | BDL      | 0.00014   | BDL | BDL |

0.62

0.38

BDL

BDL

BDL

BDL

0.00031

0.000228

BDL

BDL

BDL

BDL

Min

Max

Averag e 76

59.25

34

23.62

6.2

5.7

15.2

11.85

0.4

BDL

4.3

BDL

17

Dec,1

7

| Parar  | meters      | PM <sub>10</sub><br>μg/m <sup>3</sup> | PM <sub>2.5</sub><br>μg/m <sup>3</sup> | SO <sub>2</sub><br>μg/m³ | NO <sub>2</sub><br>μg/m <sup>3</sup> | CO<br>μg/m³ | O <sub>3</sub><br>μg/m³ | NH <sub>3</sub><br>μg/m <sup>3</sup> | C <sub>6</sub> H <sub>6</sub><br>μg/m³ | Bap<br>ng/m³ | Pb<br>μg/m³   | Ni<br>ng/m³ | As ng/m <sup>3</sup> |
|--------|-------------|---------------------------------------|----------------------------------------|--------------------------|--------------------------------------|-------------|-------------------------|--------------------------------------|----------------------------------------|--------------|---------------|-------------|----------------------|
|        |             | Annual                                | Annu<br>al                             | Annual                   | Annual                               | 8 hr        | 8hrs                    | Annu<br>al                           |                                        | dI           | Annual        | dl          |                      |
| NORM   |             | 60                                    | 40                                     | 50                       | 40                                   | UZ          | 100                     |                                      | Annual                                 | Annu<br>al   | 0.5           | Annu        | Annual               |
| CPC    | СВ          | 24 Hrs                                | 24 Hrs                                 | 24hrs                    | 24 Hrs                               | 1 hrs       | 1 hrs                   | 24hrs<br>100                         | -                                      |              | 24 hrs<br>0.5 | -           |                      |
|        |             | 100                                   | 60                                     | 80                       | 80                                   |             |                         |                                      |                                        |              |               |             |                      |
|        |             | 100                                   | 60                                     | 00                       | 00                                   | 04          | 180                     | 400                                  | 05                                     | 01           | 1.0           | 20          | 06                   |
|        | Max         | 64                                    | 34                                     | 7.8                      | 16.1                                 | BDL         | BDL                     | BDL                                  | BDL                                    | BDL          | BDL           | Annu        | BDL                  |
| ,18    | Min         | 54                                    | 22                                     | 5.4                      | 12.2                                 | BDL         | BDL                     | BDL                                  | BDL                                    | BDL          | BDL           | BDL         | BDL                  |
| March  | Averag<br>e | 56.1                                  | 27.9                                   | 6.3                      | 14.2                                 | BDL         | BDL                     | BDL                                  | BDL                                    | BDL          | BDL           | BDL         | BDL                  |
| Feb,18 | Max         | 72                                    | 37                                     | 5.8                      | 13.8                                 | BDL         | BDL                     | BDL                                  | 0.52                                   | BDL          | 0.00026       | BDL         | BDL                  |
|        | Min         | 46                                    | 24                                     | 4.7                      | 10.8                                 | BDL         | BDL                     | BDL                                  | 0.29                                   | BDL          | 0.00019       | BDL         | BDL                  |
|        | Averag<br>e | 53.12                                 | 28.75                                  | 5.3                      | 12.05                                | BDL         | BDL                     | BDL                                  | 0.415                                  | BDL          | 0.000234      | BDL         | BDL                  |
|        | Max         | 81                                    | 37                                     | 6.9                      | 12.8                                 | BDL         | BDL                     | BDL                                  | 0.62                                   | BDL          | 0.00028       | BDL         | BDL                  |
| Jan,18 | Min         | 48                                    | 18                                     | 4.5                      | 9.9                                  | BDL         | BDL                     | BDL                                  | 0.25                                   | BDL          | 0.00016       | BDL         | BDL                  |
|        | Averag<br>e | 50.88                                 | 25.66                                  | 5.53                     | 11.51                                | BDL         | BDL                     | BDL                                  | 0.41                                   | BDL          | 0.000224      | BDL         | BDL                  |
|        | Max         | 66                                    | 29                                     | 6.3                      | 13.9                                 | BDL         | BDL                     | BDL                                  | 0.52                                   | BDL          | 0.00028       | BDL         | BDL                  |
|        | Min         | 47                                    | 18                                     | 4.7                      | 9.5                                  | BDL         | BDL                     | BDL                                  | 0.29                                   | BDL          | 0.00017       | BDL         | BDL                  |

## **Dust Suppression Measure Inside Mines**

## Annexure-IX













Water tanker



### Annexure-X

| Gr            | ound Wate      | er Level rep   | ort (Oct 2     | 017- Mar                   | ch 2018) |                |  |
|---------------|----------------|----------------|----------------|----------------------------|----------|----------------|--|
|               |                | M/S Balas      | ore Alloys L   | ıtd .                      |          |                |  |
|               |                | Kaliapani (    | Chromite mi    | nes                        |          |                |  |
|               | Water<br>Table | Water<br>Table | Water<br>Table | Water Water<br>Table Table |          | Water<br>Table |  |
| Station       | (MBGL)         | (MBGL)         | (MBGL)         | (MBGL)                     | (MBGL)   | (MBGL)         |  |
|               | October,17     | November,17    | December,17    | January,18                 | Feb,18   | March,18       |  |
|               |                | Buf            | fer Zone       |                            |          |                |  |
| kaliapani-1   | 3.6            | 3.7            | 3.7            | 3.9                        | 3.9      | 4.0            |  |
| kaliapani-2   | 4.0            | 4.5            | 4.7            | 5.0                        | 5.0      | 5.3            |  |
| Tisco Hutting | 6.2            | 6.4            | 6.5            | 6.5                        | 6.5      | 6.6            |  |
| Sukrangi      | 3.3            | 3.5            | 3.6            | 3.7                        | 4.0      | 4.2            |  |
|               |                | Co             | re Zone        |                            |          |                |  |
| Piezohole-1   | 27.6           | 27.8           | 27.8           | 27.9                       | 27.9     | 28.1           |  |
| Piezohole-2   | 27.2           | 27.4           | 27.5           | 27.6                       | 27.8     | 27.9           |  |

Annexure: XI

### **Ground Water Quality Report**

### Kaliapani Chromite Mines/s Balasore Alloys Ltd

### November, 2017

| SI. | Davamatava                             | Unit  | Standard        | GW1       | GW2       | GW3       | GW4       | GW5       | GW6       |
|-----|----------------------------------------|-------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| No. | Parameters                             | Unit  | as per IS-10500 | Open Well | Open Well | Open Well | Bore Well | Open Well | Open Well |
| 1   | рН                                     |       | 6.5-8.5         | 7.05      | 7.22      | 7.56      | 7.18      | 6.72      | 7.10      |
| 2   | Odour                                  |       | Agreeable       | Odourless | Odourless | Odourless | Odourless | Odourless | Odourless |
| 3   | Colour                                 | Hazen | 5 (Max)         | CL        | CL        | CL        | CL        | CL        | CL        |
| 4   | Taste                                  |       | Agreeable       | AL        | AL        | AL        | AL        | AL        | AL        |
| 5   | Turbidity                              | NTU   | 1 (Max)         | 0.2       | 0.6       | 0.2       | 0.4       | 0.2       | 0.6       |
| 6   | Chloride (as Cl)                       | mg/l  | 250 (Max)       | 10.9      | 12.6      | 11.4      | 11.8      | 12.4      | 11.8      |
| 7   | Residual free Chlorine                 | mg/l  | 0.2 (Min)       | ND        | ND        | ND        | ND        | ND        | ND        |
| 8   | Total Dissolved Solid                  | mg/l  | 500 (Max)       | 114       | 123       | 108       | 138       | 112       | 127       |
| 9   | Total Hardness (as CaCO <sub>3</sub> ) | mg/l  | 200 (Max)       | 54        | 72        | 78        | 80        | 79        | 94        |
| 10  | Iron (as Fe)                           | mg/l  | 0.3 (Max)       | 0.16      | 0.22      | 0.14      | 0.20      | 0.10      | 0.18      |
| 11  | Calcium (as Ca)                        | mg/l  | 75 (Max)        | 34.2      | 42.5      | 30.3      | 34.9      | 40.2      | 32.4      |
| 12  | Magnesium (as Mg)                      | mg/l  | 30 (Max)        | 20.2      | 16.8      | 24.5      | 23.7      | 17.3      | 18.6      |
| 13  | Sulfate (as SO <sub>4</sub> )          | mg/l  | 200 (Max)       | 12.6      | 14.2      | 12.8      | 13.6      | 14.0      | 14.8      |
| 14  | Manganese (as Mn)                      | mg/l  | 0.10 (Max)      | <0.00001  | <0.00001  | < 0.00001 | <0.00001  | <0.00001  | <0.00001  |
| 15  | Nitrate (as NO <sub>3</sub> )          | mg/l  | 45 (Max)        | 0.53      | 0.41      | 0.48      | 0.62      | 0.51      | 0.57      |
| 16  | Alkalinity (as CaCO <sub>3</sub> )     | mg/l  | 200 (Max)       | 52        | 64        | 66        | 68        | 66        | 69        |
| 17  | Chromium (as Cr <sup>+6</sup> )        | mg/l  | \$              | 0.018     | 0.022     | 0.010     | 0.016     | 0.026     | 0.014     |
| 18  | Fluoride (as F)                        | mg/l  | 1.0(Max)        | <0.001    | <0.001    | <0.001    | <0.001    | <0.001    | <0.001    |
| 19  | Cadmium (as Cd)                        | mg/l  | 0.003 (Max)     | <0.00001  | <0.00001  | <0.00001  | <0.00001  | <0.00001  | <0.00001  |
| 20  | Copper (as Cu)                         | mg/l  | 0.05 (Max)      | <0.0001   | <0.0001   | < 0.0001  | <0.0001   | <0.0001   | <0.0001   |
| 21  | Zinc (as Zn)                           | mg/l  | 5 (Max)         | 0.14      | 0.19      | 0.22      | 0.11      | 0.19      | 0.27      |
| 22  | Lead (as Pb)                           | mg/l  | 0.01 (Max)      | <0.0001   | < 0.0001  | < 0.0001  | < 0.0001  | <0.0001   | < 0.0001  |
| 23  | Selenium (as Se)                       | mg/l  | 0.01 (Max)      | <0.0001   | <0.0001   | < 0.0001  | <0.0001   | <0.0001   | <0.0001   |
| 24  | Mineral Oil                            | mg/l  | 0.5 (Max)       | ND        | ND        | BDL       | BDL       | ND        | ND        |
| 25  | Mercury (as Hg)                        | mg/l  | 0.001 (Max)     | <0.00001  | <0.00001  | <0.00001  | <0.00001  | <0.00001  | <0.00001  |
| 26  | Cyanide (as CN)                        | mg/l  | 0.05 (Max)      | <0.002    | <0.002    | <0.002    | <0.002    | <0.002    | <0.002    |
| 27  | Boron (as B)                           | mg/l  | 0.5 (Max)       | <0.0001   | <0.0001   | <0.0001   | <0.0001   | <0.0001   | <0.0001   |
| 28  | Arsenic (as As)                        | mg/l  | 0.01(Max)       | <0.0001   | <0.0001   | <0.0001   | <0.0001   | <0.0001   | <0.0001   |
| 29  | Phosphorus (as P)                      | mg/l  | \$              | 0.54      | 0.51      | 0.62      | 0.48      | 0.63      | 0.66      |

Note- AL- Agreeable, CL-Colourless, ND-Not Detecte,. \$-Not Specified.

### February, 2018

| SI. | Douguestous                            | Unit  | Standard        | GW1       | GW2       | GW3       | GW4       | GW5       | GW6       |
|-----|----------------------------------------|-------|-----------------|-----------|-----------|-----------|-----------|-----------|-----------|
| No. | Parameters                             | Unit  | as per IS-10500 | Open Well | Open Well | Open Well | Bore Well | Open Well | Open Well |
| 1   | рН                                     |       | 6.5-8.5         | 7.30      | 7.15      | 7.50      | 7.10      | 6.95      | 7.20      |
| 2   | Odour                                  |       | Odourless       | Odourless | Odourless | Odourless | Odourless | Odourless | Odourless |
| 3   | Colour                                 | Hazen | 5 (Max)         | CL        | CL        | CL        | CL        | CL        | CL        |
| 4   | Taste                                  |       | Agreeable       | AL        | AL        | AL        | AL        | AL        | AL        |
| 5   | Turbidity                              | NTU   | 1 (Max)         | 0.4       | 0.4       | 0.6       | 0.2       | 0.4       | 0.2       |
| 6   | Chloride (as Cl)                       | mg/l  | 250 (Max)       | 11.2      | 10.5      | 12.1      | 10.7      | 12.6      | 10.5      |
| 7   | Residual free Chlorine                 | mg/l  | 0.2 (Min)       | ND        | ND        | ND        | ND        | ND        | ND        |
| 8   | Total Dissolved Solid                  | mg/l  | 500 (Max)       | 126       | 136       | 142       | 124       | 143       | 118       |
| 9   | Total Hardness (as CaCO <sub>3</sub> ) | mg/l  | 200 (Max)       | 67        | 78        | 81        | 86        | 83        | 97        |

| 10 | Iron (as Fe)                       | mg/l | 0.3 (Max)   | 0.28     | 0.20     | 0.15      | 0.18     | 0.12     | 0.10      |
|----|------------------------------------|------|-------------|----------|----------|-----------|----------|----------|-----------|
| 11 | Calcium (as Ca)                    | mg/l | 75 (Max)    | 35.1     | 44.1     | 34.3      | 33.2     | 35.4     | 36.7      |
| 12 | Magnesium (as Mg)                  | mg/l | 30 (Max)    | 22.1     | 18.9     | 27.4      | 25.4     | 21.2     | 20.7      |
| 13 | Sulfate (as SO <sub>4</sub> )      | mg/l | 200 (Max)   | 11.4     | 13.3     | 16.4      | 14.4     | 14.8     | 13.8      |
| 14 | Manganese (as Mn)                  | mg/l | 0.10 (Max)  | <0.00001 | <0.00001 | < 0.00001 | <0.00001 | <0.00001 | < 0.00001 |
| 15 | Nitrate (as NO <sub>3</sub> )      | mg/l | 45 (Max)    | 0.62     | 0.43     | 0.51      | 0.72     | 0.59     | 0.53      |
| 16 | Alkalinity (as CaCO <sub>3</sub> ) | mg/l | 200 (Max)   | 52       | 64       | 66        | 68       | 66       | 69        |
| 17 | Chromium (as Cr <sup>+6</sup> )    | mg/l | \$          | 0.022    | 0.028    | 0.016     | 0.026    | 0.024    | 0.020     |
| 18 | Fluoride (as F)                    | mg/l | 1.0(Max)    | <0.001   | <0.001   | <0.001    | <0.001   | <0.001   | <0.001    |
| 19 | Cadmium (as Cd)                    | mg/l | 0.003 (Max) | <0.00001 | <0.00001 | < 0.00001 | <0.00001 | <0.00001 | <0.00001  |
| 20 | Copper (as Cu)                     | mg/l | 0.05 (Max)  | <0.0001  | <0.0001  | < 0.0001  | <0.0001  | <0.0001  | < 0.0001  |
| 21 | Zinc (as Zn)                       | mg/l | 5 (Max)     | 0.17     | 0.21     | 0.20      | 0.18     | 0.22     | 0.23      |
| 22 | Lead (as Pb)                       | mg/l | 0.01 (Max)  | <0.0001  | < 0.0001 | < 0.0001  | <0.0001  | < 0.0001 | < 0.0001  |
| 23 | Selenium (as Se)                   | mg/l | 0.01 (Max)  | <0.0001  | <0.0001  | < 0.0001  | <0.0001  | <0.0001  | < 0.0001  |
| 24 | Mineral Oil                        | mg/l | 0.5 (Max)   | ND       | ND       | BDL       | BDL      | ND       | ND        |
| 25 | Mercury (as Hg)                    | mg/l | 0.001 (Max) | <0.00001 | <0.00001 | < 0.00001 | <0.00001 | <0.00001 | <0.00001  |
| 26 | Cyanide (as CN)                    | mg/l | 0.05 (Max)  | <0.002   | <0.002   | <0.002    | <0.002   | <0.002   | <0.002    |
| 27 | Boron (as B)                       | mg/l | 0.5 (Max)   | <0.0001  | <0.0001  | <0.0001   | <0.0001  | <0.0001  | <0.0001   |
| 28 | Arsenic (as As)                    | mg/l | 0.01(Max)   | <0.0001  | <0.0001  | <0.0001   | <0.0001  | <0.0001  | < 0.0001  |
| 29 | Phosphorus (as P)                  | mg/l | \$          | 0.53     | 0.60     | 0.68      | 0.50     | 0.65     | 0.72      |

Note- AL- Agreeable, CL-Colourless, ND-Not Detected,. \$-Not Specified.

GW1- Tisco Camp (21° 01′44.8″N, 85°44′44.6″E) GW2- Kaliapani Village (21° 02′39.1″N, 85°46′21.4″E) GW3- Sukurangi (21° 02′ 18.1″N, 85°47′ 41.7″E) GW4- Inside Mine (21°02′7.7″N, 85°45′32.6″E) GW5- Chingudiapal (21° 02′56.9″N, 85° 45′ 4.5″E) GW6- Kalarangi Village (21° 0′ 47.6″N, 85° 43′ 38.1″E)

**Annexure: XII** 

## **Kaliapani Chromite Mines**

## Flow Rate Monitoring Report

|       |                | November                    | ,2017                 | January,2018      |                       |  |
|-------|----------------|-----------------------------|-----------------------|-------------------|-----------------------|--|
| SI No | Location       | Flow rate m <sup>3</sup> /s | Flow rate IN<br>CUSEC | Flow rate<br>m³/s | Flow rate IN<br>CUSEC |  |
| 1     | Damsala<br>U/S | 5.99                        | 211.46                | 4.72              | 166.68                |  |
| 2     | Damsala<br>D/S | 7.25                        | 256.00                | 5.71              | 201.65                |  |

Annexure: XIII

# DETAILS OF COIR MATTING & GRASS TURFING ON DUMP SLOPE KALIAPANI CHROMITE MINES,M/s BALASORE ALLOYS LIMITED

|         | DETAILS OF COIRMATTIN  | NG         |
|---------|------------------------|------------|
| YEAR    | LOCATION               | AREA (SQM) |
| 2010-11 | Dump 2                 | 5000       |
| 2011-12 | Dump-3(IMFA side)      | 4500       |
| 2012-13 | Dump-3(IMFA side)      | 4500       |
| 2013-14 | Dump-3( Mahagiri side) | 8600       |
| 2014-15 | Dump-1 (North)         | 8500       |
| 2015-16 | Dump 3 (North side)    | 6000       |
| 2017-18 | Dump 3(Mhagiri Side)   | 4000       |
|         | Total                  | 41100      |

|         | DETAILS OF GRASS TURFING                                   |            |  |  |  |  |  |  |  |
|---------|------------------------------------------------------------|------------|--|--|--|--|--|--|--|
| YEAR    | LOCATION                                                   | AREA (SQM) |  |  |  |  |  |  |  |
| 2013-14 | Dump-1 (Access road) slope                                 | 5000       |  |  |  |  |  |  |  |
| 2014-15 | Dump-1 (Access road) slope                                 | 5200       |  |  |  |  |  |  |  |
| 2015-16 | Washing Bay to View Point and common<br>Boundary with IMFA | 6350       |  |  |  |  |  |  |  |
|         | Total                                                      | 16550      |  |  |  |  |  |  |  |

|             | DETAILS OF INSIDE ML                                                                              | AREA PL       | ANTATIO | N                                   |                                          |
|-------------|---------------------------------------------------------------------------------------------------|---------------|---------|-------------------------------------|------------------------------------------|
| YEAR        | LOCATION                                                                                          | AREA<br>(Ha.) | NOS.    | SURVIV<br>AL %                      | SPECIES                                  |
|             | Dump-1                                                                                            | 2             | 11020   | SURVIV                              |                                          |
| 2010-<br>11 | Inside mines premises (COB, Canteen & weigh bridge)                                               |               | 95      | 87%                                 |                                          |
| 2011-       | Dump-3                                                                                            | 0.8           | 1600    | 87%                                 |                                          |
| 12          | Dump-1                                                                                            | 1.2           | 8375    | 87%                                 |                                          |
| 2012-       | Dump-3                                                                                            | 0.2           | 250     | 87% 87% 87% 85% 85% 86% 86% 88% 88% |                                          |
| 13          | Dum-1                                                                                             | 1.8           | 8150    |                                     |                                          |
|             | Dump-3, slope                                                                                     | 0.8           | 6882    | 85%                                 | -                                        |
| 2013-       | Safety zone, Dump-3                                                                               | 0.5           | 3018    | 85%                                 |                                          |
| 14          | Dump-1 (Access road)                                                                              | 0.7           | 2085    | 87%                                 |                                          |
|             | Dump-1 (Access road) slope and safety zone                                                        | 1             | 2565    | 86%                                 | Peltopho<br>rum,<br>Acacia,<br>Albizzia, |
| 2014-<br>15 | Dump-1 (North)                                                                                    | 1.25          | 4000    | 86%                                 | Pongami<br>a,                            |
|             | Dump-2 slope and safety zone                                                                      | 4             | 12000   | 88%                                 | Tamarind<br>, Almond,<br>Neem            |
|             | Admin. Office premises & Access road Jindal side from Old washing platform to View point (Dump-1) | 1.25          | 5000    | 85%                                 | and<br>Arjun                             |
|             | Common boundary with IMFA Area (<br>Mines Pit )                                                   | 1             | 4000    | 89%                                 |                                          |
| 2015-<br>16 | Access road Jindal side along with Aloe vera Plantn (Dump-1)                                      | 0.3           | 1200    | 86%                                 |                                          |
|             | Over coirmatting of dump-3, 2nd terrace (mines pit side)                                          | 0.1875        | 750     | 85%                                 |                                          |
|             | Dump-3(Jindal site Boundary area)                                                                 | 1.2           | 4800    | 86%                                 |                                          |
|             | Dump-3 Slope                                                                                      | 0.18          | 750     | 90%                                 |                                          |
| 2016-<br>17 | Dump-3 slope                                                                                      | 0.2           | 2000    | 90%                                 |                                          |
| 2017-<br>18 | Gabion wall                                                                                       | 0.35          | 134000  |                                     |                                          |
|             | TOTAL                                                                                             |               |         | 78540                               |                                          |



#### भारत सरकार

#### **GOVERNMENT OF INDIA**

श्रम एवं रोजगार मंत्रालय

#### MINISTRY OF LABOUR EMPLOYMENT

खान सुरक्षा महानिदेशालय

#### DIRECTORATE GENERAL OF MINES SAFETY,

भुवनेश्वर क्षेत्र

#### **BHUBANESWAR REGION**

L-1, Nayapalli, PO: RRL Campus, Bhubaneswar-751013 (Phone – (+91) 7735277034 ; FAX – (0674) 2301452; e-mail: dgmsbbsr@gmail.com)

संख्या BBR-JA/CH-2&12/P-111(3)/2017/\_\_\_\_/

मुवनेश्वर, दिनांक \_\_\_\_/02/2017

प्रेषक

खान सुरक्षा निदेशक, मुवनेश्वर क्षेत्र ।

To

The Agent,
 Kaliapani Chromite Mine,
 M/s Balasore Alloyes Limited,
 P.O. Kaliapani, Dist: Jajpur (Odisha).

 The Agent, Sukinda Mines(Chromite) M/s IMFA, Jajpur Road, Dist: Jajpur (Odisha).

Sub: Extension of validity period of permission granted vide letter no.BJA/CH-2 & 12/P-111(3)/2015/595-96 dated 12.02.2015 under Reg.111(3) of the Metalliferous Mines Regulations, 1961 for dumping of overburden within 7.5 m of common boundary between Kaliapani Chromite Mine of M/s Balasore Alloys Ltd. & Sukinda Mines(Chromite) of M/s IMFA Ltd.

Sir,

Please refer to your letter No.Mines/BAL/160 dated 10.01.2017 and the enclosed plans/sections therewith on the above subject.

The matter has since been examined in the light of what has been stated in the application and the submitted plan/section.

In exercise of the powers conferred on the Chief Inspector of Mines (also designated as Director-General of Mines Safety) under the provisions of Regulations 111(3) of the Metalliferous Mines Regulations, 1961 and by virtue of authorisation granted to me by the Chief Inspector of Mines (also designated as Director-General of Mines Safety) under Section 6(1) of the Mines Act, 1952, I, hereby extend the validity period of the earlier granted permission under Reg.111(3) of the Metalliferous Mines Regulations, 1961 vide this Directorate's letter no. BJA/CH-2&12/P-111(3)/2015/595-96 dated 12.02.2015, for dumping of overburden within 7.5 m of common boundary between Kaliapani Chromite Mine of M/s Balasore Alloys Ltd. & Sukinda Mines(Chromite) of M/s IMFA Ltd, as shown on the enclosed Plan No. BAL/IMFA/02/16 and No.BAL/IMFA/2/16 both dated 10.01.2017, for a further period of two years i.e. upto 11.02.2019, subject to the following conditions being complied with:

- 1.0 The proposed dumping of overburden along the common boundary lines i.e 'AB' & 'BC' of M/s IMFA and 'IH' & 'HG' of M/s BAL, as shown in the enclosed Plan No. BAL/IMFA/02/16 and No.BAL/IMFA/2/16 both dated 10.01.2017, shall be in 3(three) stages of each not exceeding 20 m in height subject to a total common height of not exceeding 60 m from ground level.
- 2.0 The overall stability aspects of the proposed common overburden dumping of height not exceeding 60 m from the ground level and also the influence of the common overburden dump on stress levels in the surrounding ground surface shall be jointly got studied by a

scientific agency of repute and a report submitted to this Directorate within 6 (six) months of commencement of operations in accordance with this permission.

- 3.0 All other conditions of the earlier granted permission under Reg.111(3) of the Metalliferous Mines Regulations, 1961 vide this Directorate's letter no. BJA/CH-2&12/P-111(3)/2015/595-96 dated 12.02.2015 shall remain unchanged except validity period.
- 4.0 In the event of any change in the circumstances connected with this relaxation which is likely to endanger the life of persons employed in the mine or the mine, the mining operations for which this relaxation has been granted shall be stopped forthwith and intimation thereof shall be sent to this Directorate. The said mining operation shall not be resumed without express and fresh permission in writing from this Directorate.
- 5.0 If at any time any one of the conditions, subject to which this permission has been granted, is violated or not complied with, this relaxation shall be deemed to have been revoked with immediate effect.
- 6.0 This relaxation may be amended or withdrawn at any time if considered necessary in the interest of safety.
- 7.0 This relaxation is being granted under Regulation 111(3) of the Metalliferous Mines Regulations, 1961 only without prejudice to any other provisions of law which may be or may become applicable at any time.
- 8.0 Intimation about completion of the mining operations should also be sent promptly and in any case not later than one month thereof.

भ व दी य,

E01-

( आर. सुब्रमणियन ) खान सुरक्षा निदेशक, भुवनेश्वर क्षेत्र ।

संख्या BBR-JA/CH-2&12/P-111(3)/2017/<u>23</u>+ अध्या BBR-JA/CH-2&12/P-111(3)/2017/<u>23</u>+ भुवनेश्वर, दिनांक <u>15</u>/02/2017

The Owner, M/s Balasore Alloys Ltd., PO: Balgopalpur, Balasore-756020/Orissa.
The Owner, Sukinda Mines (Chromite), M/s IMFA Ltd., Bomikhal, Bhubaneswar.

खान सुरक्षा निदेशक, भुवनेश्वर क्षेत्र ।

by e-mail





## ्रद्याव के विश्व के किया है। अस्तिक के अस्तिक के

Government of India श्रम एवंरोजगारमंत्रालय Ministry of Labour & Employment खानसुरक्षामहानिदेशालय Directorate General of Mines Safety



संख्या BJA/CH-2&12/P-111(3)/2017/<u>2037</u>/

भुवनेश्वर, दिनांक <u>/ ५</u>/08/2017

खान सुरक्षा निदेशक, भुवनेश्वर क्षेत्र ।

To

- The Agnet,
   Jindal Chromite Mine,
   M/s Jindal Stainless Ltd,
   PO-Kaliapani, Dist-Jajpur (Odisha)
- The Agent,
   Kaliapani Chromite Mine,
   M/s Balasore Alloys Limited,
   P.O. Kaliapani, Dist: Jajpur(Odisha).PIN-755 047.

Sub: Renewal of permission granted vide this Directorate's Ir No.BJA/CH-2&12/111(3)/2015/1697-98 dated 08.07.2015, under Reg.111(3) of the Metalliferous Mines Regulations, 1961for dumping of overburden within 7.5 m of the common boundary between Kaliapani Chromite mine of M/s Balasore Alloys Ltd and Jindal Chromite Mine of M/s Jindal Staineless Ltd.

Sir,

Please refer to your application vide letter No.Nil dated 19.06.2017 on the above subject, requesting for the renewal of the above exemption.

The matter has since been examined on the basis of information furnished in your application under reference and shown on the enclosed plans and sections submitted by you.

In exercise of the powers conferred on the Chief Inspector of Mines (also designated as Director-General of Mines Safety) under the provisions of Regulations 111(3) of the Metalliferous Mines Regulations, 1961 and by virtue of authorisation granted to me by the Chief Inspector of Mines (also designated as Director General of Mines Safety) under Section 6(1) of the Mines Act, 1952, I, hereby renew the permission granted vide letter No.BJA/CH-2&12/111(3)/2015/1697-98 dated 08.07.2015,under Regulation 111(3) of the Metalliferous Mines Regulations, 1961 for dumping of overburden within 7.5 m of the common boundary between Kaliapani Chromite mine of M/s Balasore Alloys Ltd. and M/s Jindal Chromite mine of M/s Jindal Stainless Ltd., subject to the following conditions being strictly complied with:

- 1.0 All conditions stipulated in the said permission letter bearing No.BJA/CH-2&12/111(3)/2015/1697-98 dated 08.07.2015 shall remain unaltered except Condition No.11.0.
- 2.0 The permission shall remain valid for a period of two (2) years from the date of issue of the letter.

भ व दी य,

(आर. सुब्रमणियन)
खान सुरक्षा निदेशक,
भुवनेश्वर क्षेत्र

Plantation inside ML area









Vertiver Plantation and Grass Turffing at Dump slope







Coirmatting at Dump-3







# Kaliapani Chromite Mines. M/s Balasore Alloys Ltd Details of Retaining Wall and Gabion wall at Mines

| Environmental<br>Measures | Dump-1                      | Dump-2     | Dump-3                       |
|---------------------------|-----------------------------|------------|------------------------------|
| Retaining wall            |                             | 116M×2M×1M | 380M×1M×2M,<br>150M×1M×5M    |
| Gabion wall               | 450M×30M×15-10M             |            |                              |
| Garland drain             | 224 M                       | 116 M      | 830 M                        |
| Coirmatting               | 8500 Cum                    | 5000 Cum   | 16500 Cum                    |
| Plantation                | 36190 nos                   | 12000 nos  | 15750 nos                    |
| Grass Turffing            | 10200 Cum                   |            |                              |
| Settling Pit              | Two nos 90 Cum &<br>192 Cum |            | Two nos 972<br>Cum & 288 Cum |

## Photos Showing Gabion wall and Retaining wall

## Gabion wall at Dump-1



Retaining wall at dump-2





Retaining wall at dump-3



### Kaliapani Chromite Mines/s Balasore Alloys Ltd

### November,2017

#### **ANALYSIS RESULTS OF SURFACE WATER**

| SI.<br>No. | Parameters                                               | Unit      | Standard as per IS-<br>2296 Class-C                           | SW1        | SW2        | SW3        |
|------------|----------------------------------------------------------|-----------|---------------------------------------------------------------|------------|------------|------------|
| 1          | Colour,                                                  | Hazen     | Colourless                                                    | Colourless | Colourless | Colourless |
| 2          | pH value                                                 |           | 5.5-9.0                                                       | 7.12       | 7.29       | 6.38       |
| 3          | Iron (as Fe)                                             | mg/l      | 3                                                             | 0.59       | 0.76       | 0.64       |
| 4          | Chloride (as Cl)                                         | mg/l      | \$                                                            | 20.7       | 19.6       | 24.2       |
| 5          | Fluoride (as F)                                          | mg/l      | 2.0                                                           | ND         | ND         | ND         |
| 6          | Total Dissolved Solids                                   | mg/l      | \$                                                            | 68         | 74         | 76         |
| 7          | Total Suspended Solids                                   | mg/l      | 100                                                           | 64         | 76         | 88         |
| 8          | Manganese (as Mn)                                        | mg/l      | 2                                                             | 0.034      | 0.024      | 0.035      |
| 9          | Sulfate (as SO <sub>4</sub> )                            | mg/l      | \$                                                            | 16.5       | 18.2       | 20.6       |
| 10         | Nitrate (as NO <sub>3</sub> )                            | mg/l      | 1.0                                                           | 0.50       | 0.42       | 0.53       |
| 11         | Phenolic Compounds (as C <sub>6</sub> H <sub>5</sub> OH) | mg/l      | 1.0                                                           | < 0.001    | <0.001     | < 0.001    |
| 12         | Mercury (as Hg)                                          | mg/l      | 0.01                                                          | <0.00001   | <0.00001   | <0.00001   |
| 13         | Cadmium (as Cd)                                          | mg/l      | 2.0                                                           | <0.00001   | <0.00001   | <0.00001   |
| 14         | Chromium(as Cr <sup>+6</sup> )                           | mg/l      | 0.1                                                           | 0.020      | 0.016      | 0.030      |
| 15         | Total Chromium (ac Cr)                                   | mg/l      | 2.0                                                           | 0.064      | 0.054      | 0.080      |
| 16         | Selenium (as Se)                                         | mg/l      | 0.05                                                          | <0.0001    | <0.0001    | <0.0001    |
| 17         | Arsenic (as As)                                          | mg/l      | 0.2                                                           | <0.0001    | <0.0001    | <0.0001    |
| 18         | Cyanide (as CN)                                          | mg/l      | 0.2                                                           | <0.002     | <0.002     | <0.002     |
| 19         | Lead (as Pb)                                             | mg/l      | 0.1                                                           | <0.0001    | <0.0001    | < 0.0001   |
| 20         | Zinc (as Zn)                                             | mg/l      | 5.0                                                           | <0.0001    | <0.0001    | <0.0001    |
| 21         | Nickel (as Ni)                                           | mg/l      | 3.0                                                           | 0.28       | 0.22       | 0.34       |
| 22         | Oil Grease                                               | mg/l      | 10                                                            | ND         | ND         | ND         |
| 23         | Free Ammonia (NH <sub>3</sub> )                          | mg/l      | 5.0                                                           | 0.36       | 0.28       | 0.19       |
| 24         | Coliform Organism                                        | MPN/100ml | \$                                                            | 136        | 119        | 152        |
| 25         | Bio-assay Test                                           |           | 90% of survival of<br>fish after 96 hours<br>in 100% effluent | 98%        | 98%        | 98%        |
| 26         | Dissolved Oxygen as O <sub>2</sub>                       | mg/l      | \$                                                            | 5.6        | 6.2        | 6.4        |
| 27         | BOD, 3 days at 27 <sup>0</sup> C                         | mg/l      | 30                                                            | 2.4        | 2.2        | 2.0        |
| 28         | COD                                                      | mg/l      | 250                                                           | 7.2        | 6.8        | 7.0        |
| 29         | Electrical Conductivity (EC), μmhos/cm                   | μmhos/cm  | \$                                                            | 114        | 130        | 122        |
| 30         | Phosphorus (as P)                                        | mg/l      | \$                                                            | 0.16       | 0.20       | 0.19       |

Note- ND-Not Detected, \$-Not Specified .

### February, 2018

| SI.<br>No. | Parameters                    | Unit  | Standard as per IS-<br>2296 Class-C | SW1        | SW2        | SW3        |
|------------|-------------------------------|-------|-------------------------------------|------------|------------|------------|
| 1          | Colour,                       | Hazen | Colourless                          | Colourless | Colourless | Colourless |
| 2          | pH value                      |       | 5.5-9.0                             | 7.35       | 7.64       | 7.95       |
| 3          | Iron (as Fe)                  | mg/l  | 3                                   | 0.57       | 0.52       | 0.47       |
| 4          | Chloride (as Cl)              | mg/l  | \$                                  | 15.3       | 13.5       | 12.9       |
| 5          | Fluoride (as F)               | mg/l  | 2.0                                 | 0.08       | 0.14       | 0.11       |
| 6          | Total Dissolved Solids        | mg/l  | \$                                  | 67         | 73         | 78         |
| 7          | Total Suspended Solids        | mg/l  | 100                                 | 50         | 48         | 61         |
| 8          | Manganese (as Mn)             | mg/l  | 2                                   | 0.051      | 0.039      | 0.032      |
| 9          | Sulfate (as SO <sub>4</sub> ) | mg/l  | \$                                  | 18.4       | 15.5       | 13.1       |
| 10         | Nitrate (as NO <sub>3</sub> ) | mg/l  | 1.0                                 | 0.24       | 0.37       | 0.31       |

| 11 | Phenolic Compounds (as C <sub>6</sub> H <sub>5</sub> OH) | mg/l      | 1.0                                                           | <0.001   | <0.001   | <0.001   |
|----|----------------------------------------------------------|-----------|---------------------------------------------------------------|----------|----------|----------|
| 12 | Mercury (as Hg)                                          | mg/l      | 0.01                                                          | <0.0001  | <0.00001 | <0.00001 |
| 13 | Cadmium (as Cd)                                          | mg/l      | 2.0                                                           | <0.00001 | <0.00001 | <0.00001 |
| 14 | Chromium(as Cr <sup>+6</sup> )                           | mg/l      | 0.1                                                           | 0.018    | 0.026    | 0.030    |
| 15 | Total Chromium (ac Cr)                                   | mg/l      | 2.0                                                           | 0.028    | 0.032    | 0.044    |
| 16 | Selenium (as Se)                                         | mg/l      | 0.05                                                          | <0.0001  | <0.0001  | <0.0001  |
| 17 | Arsenic (as As)                                          | mg/l      | 0.2                                                           | <0.0001  | <0.0001  | <0.0001  |
| 18 | Cyanide (as CN)                                          | mg/l      | 0.2                                                           | <0.002   | <0.002   | <0.002   |
| 19 | Lead (as Pb)                                             | mg/l      | 0.1                                                           | <0.0001  | <0.0001  | <0.0001  |
| 20 | Zinc (as Zn)                                             | mg/l      | 5.0                                                           | <0.0001  | <0.0001  | <0.0001  |
| 21 | Nickel (as Ni)                                           | mg/l      | 3.0                                                           | 0.23     | 0.36     | 0.32     |
| 22 | Oil Grease                                               | mg/l      | 10                                                            | ND       | ND       | ND       |
| 23 | Free Ammonia (NH <sub>3</sub> )                          | mg/l      | 5.0                                                           | 0.18     | 0.11     | 0.13     |
| 24 | Coliform Organism                                        | MPN/100ml | \$                                                            | 128      | 119      | 135      |
| 25 | Bio-assay Test                                           |           | 90% of survival of<br>fish after 96 hours<br>in 100% effluent | 98%      | 98%      | 98%      |
| 26 | Dissolved Oxygen as O <sub>2</sub>                       | mg/l      | \$                                                            | 7.1      | 6.3      | 5.5      |
| 27 | BOD, 3 days at 27 <sup>o</sup> C                         | mg/l      | 30                                                            | 2.2      | 2.5      | 2.3      |
| 28 | COD                                                      | mg/l      | 250                                                           | 5.4      | 5.9      | 6.2      |
| 29 | Electrical Conductivity (EC), μmhos/cm                   | μmhos/cm  | \$                                                            | 120      | 114      | 137      |
| 30 | Phosphorus (as P)                                        | mg/l      | \$                                                            | 0.28     | 0.22     | 0.27     |

Note- ND-Not Detected, \$-Not Specified .

SW1- Damsala Nala Near Chirigunia U/S  $(21^{0}02'39.1"\text{N}, 85^{0} 46'21.4"\text{E})$  SW2- Damsala Nala Near Chingudiapal D/S  $(21^{0}02'8.8"\text{N}, 85^{0}44'27.8"\text{E})$  SW3- Near Mine Boundary  $(21^{0}02'18.1"\text{N}, 85^{0}45'33.2"\text{E})$ 

#### KALIAPANI CHROMITE MINES, M/S BALASORE ALLOYS LTD

#### VEHICULAR EMISSION REPORT

| Sl.<br>No.    | Vehicle No.    | Vehicle<br>Make | Vehicle<br>Model | CO<br>(%) | HC<br>(ppm) | NO <sub>X</sub> (%) | Smoke<br>(HSU) |
|---------------|----------------|-----------------|------------------|-----------|-------------|---------------------|----------------|
| 1             | OD-04- B- 8779 | MAN             | HIWA             | 0.124     | 59          | 78.63               | 36.48          |
| 2             | OD-04- E- 7537 | MAN             | HIWA             | 0.116     | 62          | 79.52               | 26.56          |
| 3             | OD-04- E- 8594 | MAN             | HIWA             | 0.108     | 73          | 77.21               | 42.20          |
| 4             | OD-04- E- 8592 | MAN             | HIWA             | 0.097     | 58          | 78.46               | 50.49          |
| 5             | OD-04- B- 8781 | MAN             | HIWA             | 0.117     | 70          | 78.36               | 29.36          |
| 6             | OD-04- B- 8780 | MAN             | HIWA             | 0.089     | 82          | 77.74               | 46.77          |
| 7             | OD-04- E- 8589 | MAN             | HIWA             | 0.099     | 67          | 77.92               | 37.95          |
| 8             | OD-04- E- 8590 | MAN             | HIWA             | 0.101     | 77          | 80.56               | 49.78          |
| 9             | OD-04- E- 7536 | MAN             | HIWA             | 0.126     | 68          | 79.02               | 38.49          |
| 10            | OD-04- G- 5855 | MAN             | HIWA             | 0.109     | 81          | 80.76               | 39.93          |
| 11            | OD-04- E- 7535 | MAN             | HIWA             | 0.116     | 79          | 78.90               | 59.55          |
| 12            | OD-04- B- 8776 | MAN             | HIWA             | 0.120     | 84          | 78.87               | 39.47          |
| 13            | OD-04- B- 8778 | MAN             | HIWA             | 0.098     | 69          | 75.59               | 56.59          |
| 14            | OD-04- B- 8782 | MAN             | HIWA             | 0.082     | 74          | 75.59               | 45.33          |
| 15            | OD-04- E- 7537 | MAN             | HIWA             | 0.123     | 65          | 78.90               | 52.52          |
| 16            | OD-04- E- 7535 | MAN             | HIWA             | 0.112     | 76          | 77.79               | 34.61          |
| 17            | OD-04- E- 7534 | MAN             | HIWA             | 0.104     | 80          | 77.51               | 17.65          |
| 18            | OD-04- E- 7533 | MAN             | HIWA             | 0.093     | 55          | 76.50               | 54.36          |
| 19            | Water Tanker   |                 |                  | 0.135     | 87          | 78.22               | 36.39          |
| 20            | Water Tanker   |                 |                  | 0.141     | 90          | 78.44               | 33.25          |
| CPCB Standard |                |                 |                  | 3.0       | 1500        |                     | 65             |

#### Annexure XVIII

# PHOTOS SHOWING TRUCKS COVERED WITH TARPAULINE & WHEEL WASHNING SYTEM AT MINES









#### Annexure-XIX

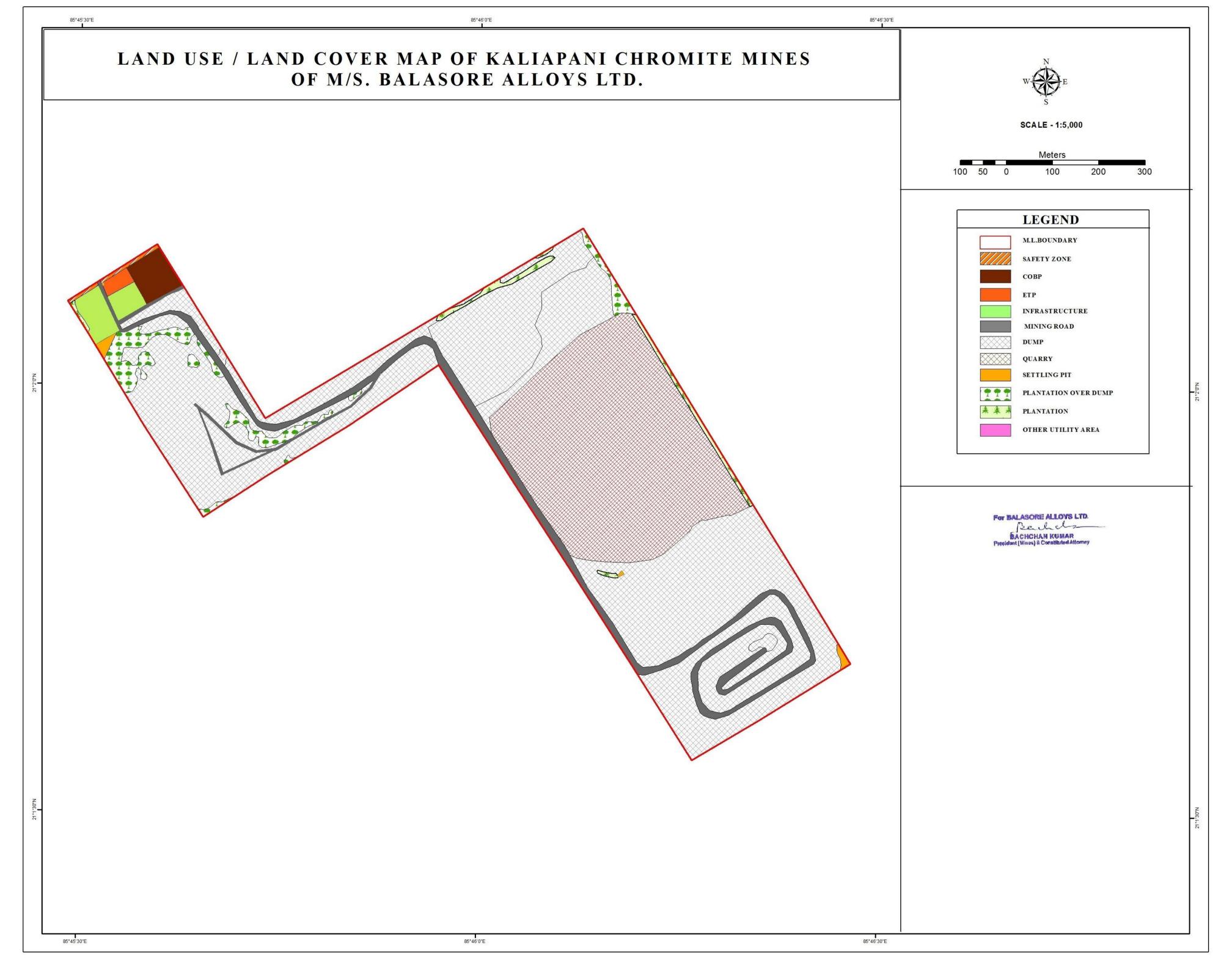
## Photos Showing ETP, STP & O& G Pit



ETP: capacity 445 KLH

STP: 40KLD

O& G Pit






## Kaliapani Chromite Mines/s Balasore Alloys Ltd

### **Present land Use Breakup**

| SI. No. | Component                                                                                                                                                      | Forest Land (Ha) | Non Forest land(Ha) |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------------|
| 1       | Area under mining                                                                                                                                              | 22.022           | Nil                 |
| 2       | Storage for top soil                                                                                                                                           | 0                | Nil                 |
| 3       | Waste dump site                                                                                                                                                | 35.173           | Nil                 |
| 4       | Mineral storage                                                                                                                                                | 2.249            | Nil                 |
| 5       | Infrastructure (workshop, administrative building, colony etc.                                                                                                 | 1.071            | Nil                 |
| 6       | Hauling Road for Mining                                                                                                                                        | 0.342            |                     |
| 7       | Roads                                                                                                                                                          |                  | 0.344               |
| 8       | Railways                                                                                                                                                       | 0                | Nil                 |
| 9       | Tailing pond                                                                                                                                                   | 0.020            | Nil                 |
| 10      | Effluent Treatment Plant                                                                                                                                       | 0.240            | Nil                 |
| 11      | Mineral Separation Plant                                                                                                                                       | 0.702            | Nil                 |
| 12      | Township area                                                                                                                                                  | 0                | Nil                 |
| 13      | Others (to specify) - Area towards south east side of dump – 3 and areas where green belt and garland drain has already been developed.(including Safety Zone) | 2.300            | Nil                 |
|         | Grand Total                                                                                                                                                    | 64.119           | 0.344               |



## OFFICE OF THE DIVISIONAL FOREST OFFICER: CUTTACK FOREST DIVISION GHATAKULA, NUAPADA, MADHUPATNA, CUTTACK-753010.

E-mail Id-dfo.cuttackforestdivision@yahoo.com, Fax-0671-2347611

No. \_\_\_\_\_/ Th January, 2015...

To

The Vice President (Mine), Kaliapani Chromite Mines,

M/s-Balasore Alloys Ltd., At/P.O.- Kaliapani, Dist-Jajpur.

Sub: -

Site specific wildlife conservation plan in respect of Kaliapani Chromite mines of M/s Balasore Alloys Ltd. in Jajpur Dist. Odisha.

X-Sub:-

Revision/modification of this office memo no.233 dt.12.01.2015.

Ref: -

- (i) Memo No.8478 dt.07.11.2014 of PCCF, (Wildlife) & Chief Wildlife Warden, Odisha to your address.
- (ii) This office letter no.233 dt.12.01.2015.
- (iii) Your letter no.1968 dt.20.01.2015.

Sir.

In inviting a reference to the subject cited above it is to inform you that the letter as issued vide this office no.233 dt.12.01.2015 is hereby revised /modified which should be read as follows and act accordingly.

The Site specific wildlife conservation plan in respect of Kaliapani Chromite mines of M/s Balasore Alloys Ltd. has been approved by the PCCF (Wildlife) & Chief Wildlife Warden, Odisha with the financial forecast of Rs.254.18 Lakh (Two Crore Fifty Fore Lakh Eighteen Thousand) only for the following activities.

- (i) For activities to be implemented in project area by Rs.64.82 Lakh the User Agency in Cuttack Forest Division.
- (ii) For activities to be Implemented by DFO, Cuttack Division in project impact area

Rs 189.36 Lakh

Grand Total- Rs 254.18 Lakh

Hence you are requested to deposit an amount of Rs 189.36 Lakh (Rupees One Crore Eighty Nine Lakh Thirty Six Thousand) only through RTGS in either of the following Banks in the CAMPA fund.

- Corporation Bank, Lodhi Complex Branch, New Delhi-110003 (RTGS/IFSC No. CORP0000371, SB Account No. SB01025222).
- Union Bank of India, Sundar Nagar, New Delhi-110003 (RTGS/IFSC No. UBIN0534498, SB Account No. 344902010105428)

Further, you are requested to note the following conditions for future compliance.

- i. This plan may be revisited after five years and the user agency will give undertaking to contribute towards the revised cost of the conservation plan till the project period, if any.
- ii. The project proponent has to prepare and submit the Conservation Plan for the next ten years of their lease period (balance period of which forest land remains diverted) at least one year before the expiry of the present Conservation Plan and deposit the outlay amount upon its approval. In case of delay, the project operation will be automatically stopped.

Further, as regards the guidance sought by you for para (i) it is to inform you that an undertaking require to be furnished as per the memo no.8478 dt.07.11.2014 of the PCCF, (Wildlife) & Chief Wildlife Warden, Odisha communicated to your address.

> Yours faithfully, Divisional Forest Officer, **Cuttack Forest Division**

Myy /dt. 21-01-2015.

Copy forwarded to Addl. Pr. Chief Conservator of Forests, Forest Diversion and Nodal Officer, FC Act, O/o-the PCCF, Odisha for information and necessary action in continuation to this office memo no.234 dt.12.01.2015.

> Divisional Forest Officer, Cuttack Forest Division

Memo No. \( \frac{445}{\text{dt.}} \) /dt. \( 21-01-2015 \). Copy forwarded to Regional Chief Conservator of Forests, Angul Circle, Angul for favour of kind in continuation to this office memo no.234 dt.12.01.2015.

> Divisional Forest Officer, Cuttack Forest Division

Memo No. 446 /dt. 21-01-2015.

Copy forwarded to PCCF (Wildlife) & Chief Wildlife Warden for information and necessary action in continuation to this office memo no.234 dt.12.01.2015.

> Divisional Forest Officer, Cuttack Forest Division

3/14/2017 Untitled Page



### Online Submission & Monitoring of Environmental, Forest and Wildlife Clearances -A Single Window Clearance System

14 Mar 2017 12:17:52 Logout

User Name: [Swarup]

State: [Orissa] Role: [Applicant]

My Proposals Forest Clearance ▽

My Proposals Wildlife Clearance

Help ▽

### Online payment history made by User Agency under CAMPA

∇ Help



| Sno. | Proposal Detail                                                                                          | Application_No  | Date of IN-<br>PRINCIPLE | Amount                                                                      | to be Paid | d/Amount Pa                                       | id (in Rs.)                     | Payment Status | Payment                                                                                                                             | : Detail                                                                                    | Demand<br>Letter                 |
|------|----------------------------------------------------------------------------------------------------------|-----------------|--------------------------|-----------------------------------------------------------------------------|------------|---------------------------------------------------|---------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|
| 1    | FP/OR/MIN/11934/2015  Kaliapani Chromite Mines, Village:Kaliapani,Tehsil: Sukinda, Dist. Jajpur, Odisha. | MIN119342015626 | 18 Nov 2016              | CA: PCA: Safety Zone: NPV: Other Charges1: Other Charges2: Charges3: Total: | 2 0/-      | CAT : Addl PA : Site Specific Conservation Plan : | 0/-<br>0/-<br>0/-<br>18936000/- | Paid           | Fund Demand<br>Verified by<br>Nodal Officer On<br>Bank Name<br>Mode of<br>Payment<br>Challan<br>Generated On<br>Transaction<br>Date | : 30 Dec 2016  : Union Bank Of India  : NEFT/RTGS : (Challan)  : 30 Dec 2016  : 23 Feb 2017 | Demand Letter  Generated Challan |

Disclaimer

An innovative e-Governance initiative of MoEFCC for Transparent and Responsive Governance. For any clarification, kindly contact at(011-24695407 or may send E-Mail monitoring-fc(at)nic(dot)in.)

© Content Owned, Updated and Maintained by Ministry of Environment, Forest and Climate Change, Government of India

For any Technical support, Please Contact Environment, Forest and Climate Change Informatics Division (EFCCID), NIC, New Delhi, monitoring-fc(at)nic(dot)in



CIN-L271010R1984PLC001354

Ref. No: BAL/ACCTS/

2 3 FEB 2017

The Chief Manager State Bank of India SME Branch **Balasore Industrial Estate Branch** Balasore

Dear Sir.



Kindly arrange to transfer a sum of Rs. 4,29,15,700/- (Rupees Four Crore Twenty Nine Lac Fifteen Thousand Seven Hundred) only through RTGS/NEFT as per the details given below by debiting our CC a/c No. 30352334031 with you towards CA Scheme Charge and Site Specific Wildlife Management Plan.

**Amount** 

: Rs. 4,29,15,700/-

Account No.

CAMPAORMIN119342015626

Name of Party

ORRISA CAMPA

**Bank Name** 

: Union Bank Of India > 52, Sunder Nagar New Delhi - 110003

IFSC/RTGS Code No : UBIN0534498,

Necessary bank charges also may please be debited to our about account under intimation to us.

Your kind co-operation in this regard shall be highly appreciated

Thanking you.

Yours faithfully

FOR BALASORE ALLOYS LTD.

**AUTHORISED SIGNATORIES** 

4,29,15,700=0 Com . 57:50

4,29,15,757:50

Mob: 07381095938 UTR NO. SBINR 52013020 51

> R 32012022300051075 enf - 724059 (ec)

### OFFICE OF THE DIVISIONAL FOREST OFFICER: CUTTACK FOREST DIVISION GHATAKULA: NUAPARA: CUTTAÇK

Memo 7581 /5F (Misc.) Dated, Cuttack, the 2<sup>ND</sup> Spetemeber 2013

To

The Addl. Chief Conservator of Forests, Forest Diversion and Nodal Officer, FC Act, O/O-the Pr. Chief Conservator of Forests,

Odisha Bhubaneswar.

Sub:

Implementation of Wildlife Management Plan in the Mining area

at Project cost.

X-Sub:

Payment of cost of Wildlife Management Plan in respect of lease

for Chromite Mines of M/S Ispat Alloys now renamed as

M/S Balasore Alloys Ltd.

Ref:

Letter No.10F (Cons)-81/2004-6495/F&E Dt.23.03.2008 of Govt. of Orissa Forest & Environment Department & your office memo

no.8664 Dt.02.05.2008.

As per the instruction contained in the above memo, the User Agency, M/S Balasore Alloys Ltd. Dist. - Jajpur was asked to submit the cost of Wildlife Management Plan to make payment towards cost of Wildlife Management Plan over 64.463 ha. (64.743 ha. mentioned in the demand notice which is a typographical error) of M.L area in respect of Kaliapani Chromite Mines. Accordingly the User Agency has deposited the cost of Wildlife Management Plan through RTGS in favour of "Compensatory Afforestation Fund (CAF)-Orissa. Account No. C.A-25222 in Corporation Bank, Lodhi Road, New Delhi amounting to Rs. 1289260 /- (Rupees twelve lakh eighty nine thousand two hundred sixty) only" and the copy of the receipt is sent herewith for favour of kind information and necessary action.

Encl: As above

DIVISIONAL FOREST OFFICER CUTTACK FOREST DIVISION

Memo No.

Copy forwarded to the Regional Chief Conservator of Forests, Angul. Circle, Angul for favour of kind information and necessary action.

> DIVISIONAL FOREST OFFICER CUTTACK FOREST DIVISION

Memo No. 7581 /Dt. 02-9-13

Copy forwarded to the Vice -President (Mines), M/S Balasore Alloys Pvt. Ltd., 199, Forest Park, Bhubaneswar for info5rmation and necessary action with reference to his letter No.BAL/MINES/716/2013 Dt.16.08.2013.

> DIVISIONAL FOREST OFFICER CUITACK FOREST DIVISION

### **ANNEXURE-XXIV**

## **CSR DETAIL 2017-18**

| SI No | Activities                                                                                          | Amount in Rs |
|-------|-----------------------------------------------------------------------------------------------------|--------------|
| 1     | Construction of Community Mandap, Puja Mandap                                                       | 226410       |
| 2     | Contribution to College Bus                                                                         | 85800        |
| 3     | Construction of Girls common room with toilet, Sukinda College                                      | 522793       |
| 5     | Celebration of Van Mahotsav & saplings distribution                                                 | 4940         |
| 6     | Relief to fire tragedy affected villagers, Kamkhyanagar                                             | 34547        |
| 7     | Operation & Maintenance of 4 water supply projects,<br>Kaliapani,Ghagiashi,Chinghudipal & Bamanagar | 74220        |
| 8     | Water supply by tanker in summer, Sukinda                                                           | 322787       |
| 9     | Construction of Community Toilet, Kaliapani                                                         | 144472       |
| 10    | Swachhta Pakhwada Celebration                                                                       | 39749        |
| 11    | Youth Festival – Sourik Yuva Mahotsav Contribution,<br>Sukinda                                      | 200000       |
| 12    | Contribution to Tribal cultural functions                                                           | 66230        |
| 13    | Tailoring Center for Women Skill development,<br>Chirgunia                                          | 185639       |
| 14    | Misc. Donations to SHGs, Youth Clubs, Govt. initiatives                                             | 182749       |
| 15    | Construction of Bike/Cycle Stand, Tehsil Office, Sukinda                                            | 139153       |
| 16    | Construction of Community Hall at Birsanagar, Kateni and Sagor                                      | 1995018      |
| 17    | Baseline Survey for need assessment                                                                 | 500000       |
|       | Total                                                                                               | 4724507      |

### PERIOD- October 2017 to March 2018

## , Kaliapani Chromite Mines M/s Balasore Alloys Limited

### AMBIENT NOISE LEVEL

| CLNo  | Sl.No Location           |         | No Location Station |         |       |         |       |         |      | Values  | are in c | lB(A)  |      |        |  |  |
|-------|--------------------------|---------|---------------------|---------|-------|---------|-------|---------|------|---------|----------|--------|------|--------|--|--|
| S1.N0 | Location                 | Code DA |                     | NIGHT   | DAY   | NIGHT   | DAY   | NIGHT   | DAY  | NIGHT   | DAY      | NIGHT  | DAY  | NIGHT  |  |  |
|       | Month                    | l       | Oct                 | ober'17 | Nove  | mber'17 | Dece  | mber'17 | Janu | ıary'18 | Febru    | ary'18 | Ma   | rch'18 |  |  |
| 1     | Mines Office             | ANL 1   | 43.9                | 30.6    | 44.9  | 32.8    | 45.2  | 31.8    | 46.0 | 32.0    | 46.0     | 32.0   | 46.0 | 31.0   |  |  |
| 2     | Village<br>Kaliapani     | ANL 2   | 47.4                | 31.75   | 46.5  | 32.5    | 48.4  | 32.8    | 47.6 | 31.2    | 47.6     | 31.2   | 46.6 | 31.8   |  |  |
| 3     | Village<br>Sukrangi      | ANL 3   | 44.7                | 31.05   | 44.4  | 29.9    | 43.4  | 29.85   | 44.4 | 30.9    | 44.4     | 30.9   | 46   | 31.2   |  |  |
| 4     | Village Ransol           | ANL 4   | 46.7                | 32.05   | 46.8  | 32.1    | 46.7  | 32.15   | 46.9 | 32.4    | 46.9     | 32.4   | 47.9 | 32     |  |  |
| 6     | Village Tisco<br>Hutting | ANL 5   | 46.5                | 33      | 47.15 | 33      | 47.95 | 33.6    | 48.2 | 32.7    | 48.2     | 32.7   | 47.4 | 31.7   |  |  |
|       |                          |         |                     |         | WO    | RK ZON  | NE NO | ISE LE  | VEL  |         |          |        |      |        |  |  |
| 1     | O/C Quarry               | WNL 1   | 65.6                | 60.95   | 65    | 61.8    | 65.7  | 64.8    | 65.7 | 62.2    | 65.65    | 62.2   | 66.1 | 62.7   |  |  |
| 2     | Dumper<br>Operation      | WNL 2   | 70.2                | 66.05   | 68.3  | 63.7    | 67    | 67.7    | 66.9 | 66.0    | 66.9     | 66.0   | 67.3 | 66.2   |  |  |
| 3     | Excavator<br>Operation   | WNL 3   | 70.9                | 66.8    | 71.1  | 67      | 70.85 | 67.1    | 69   | 67.1    | 69       | 67.1   | 70.4 | 65.8   |  |  |
| 4     | DG Set                   | WNL 4   | 69.5                | 68.3    | 69.9  | 68.0    | 68.5  | 66.8    | 68.5 | 66.8    | 68.5     | 66.8   | 66.3 | 63.7   |  |  |
| 5     | Electric Pump            | WNL 5   | 65.1                | 60.8    | 65.5  | 61.0    | 65    | 65.7    | 65.1 | 60.8    | 65.05    | 60.8   | 67.5 | 61.7   |  |  |
| 6     | Loading Point            | WNL 6   | 65.8                | 64.7    | 67.6  | 63.7    | 68.2  | 60.8    | 65.8 | 64.7    | 65.8     | 64.7   | 68.9 | 65.7   |  |  |
| 7     | COB Plant                | WNL 7   | 67.6                | 64.3    | 67.2  | 62.7    | 65.3  | 63.4    | 67.6 | 64.3    | 67.6     | 64.3   | 65.0 | 60.7   |  |  |

### **Annexure-XXVI**

| Details of Expenditure Made Towards Protection of Environment(Rupees in Lakh) |                                               |                                                                                                      |         |  |  |
|-------------------------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------|---------|--|--|
| Sl Activity                                                                   |                                               | Sub-Activities                                                                                       | Expense |  |  |
| 1                                                                             |                                               | Fixed type water sprinklers installation/maintenance                                                 | 10.15   |  |  |
|                                                                               | Protection<br>Measures for                    | Dry-fog system installation / maintenance                                                            | 0.20    |  |  |
| 1                                                                             | Water Pollution                               | Expenditure towards deployment of water tankers for water sprinkling including recurring expenditure | 15      |  |  |
| 2                                                                             | Dump<br>Management                            | Construction /Maintenance of check dams, garlanding drain, Retaining wall and Gabbion wall           | 310     |  |  |
| 3 Plantation                                                                  |                                               | Inside ML area Plantation(Dump slope, Safety zone incl maintenance)                                  | 2       |  |  |
|                                                                               |                                               | Out ML area plantation(Avenue & Block)                                                               | -       |  |  |
| 4                                                                             | Protective<br>Measures for<br>Water Pollution | ETP Operation and Maintenance( Including chemical cost)                                              | 21.85   |  |  |
|                                                                               |                                               | ETP up gradation                                                                                     | 96      |  |  |
|                                                                               |                                               | Surface Run Off Management                                                                           | 4.5     |  |  |
| 5                                                                             | Training &                                    | Training                                                                                             | 0.10    |  |  |
|                                                                               | Awareness                                     | Awareness                                                                                            | 0.10    |  |  |
|                                                                               | Occupational                                  | IME/PME                                                                                              | 0.20    |  |  |
| 6                                                                             | Health &                                      | Drinking Water facility                                                                              | 1.0     |  |  |
|                                                                               | Hygiene                                       | Medicine/First aid                                                                                   | 0.6     |  |  |
| 8                                                                             | Environmental                                 | Water, Air, Soil & Noise                                                                             | 6.80    |  |  |
|                                                                               | Monitoring                                    | Maintenance of Equipment                                                                             | 0.5     |  |  |
| 9                                                                             | Other Expenses                                | Statutory Payment                                                                                    | 0.66    |  |  |
|                                                                               |                                               | Total                                                                                                | 469.6   |  |  |

## **BALASORE ALLOYS LIMITED**



### CIN-L27101OR1984PLC001354

Ref No: BAL/Mines/4449

Dated: 04.09.2017

The Member Secretary, State Pollution Control Board Paribesh Bhawan,A/118 Nilakantha Nagar Unit-VIII Bhubaneswar -751012

Sub: Submission of Environmental Statement in Form-V with respect to our Kaliapani Chromite Mines, M/s Balasore Alloys Ltd for the financial year 2016-17.

Ref: Consent to Operate Vide No No: 4712/IND\_I-CON-2576 dated 17.3.2016 Consent Order No. 1239

Dear Sir,

Please find enclosed herewith the Environmental Statement in Form - V for the financial year 2016-17 with respect to our Kaliapani Chromite Mines, M/S Balasore Alloys Ltd, Kaliapani, Jajpur, Odisha for your kind perusal.

Thanking you with regards

Yours faithfully For M/s Balasore Alloys Ltd

Swarup Panda

Vice President (Corporate Affairs)

Encl: As above

Copy to: The Regional Officer, Kalinagnagar, OSPCB.

Reivo 1911) SEP 2017 SEP 2017

FORM – V (See rule 14)

Environmental Statement for the financial year ending with 31<sup>st</sup> March' 17

PART – A

i. Name and address of the owner/occupier of the industry/operation/process :

Mr Amarnath Dhar Mines Manager

Kaliapani Chromite Mine, M/s Balasore Alloys Ltd

At/PO:Kaliapani, Jajpur 755047

Odisha.

sukinda\_mines@balasorealloys.com

ii. Industry category:

Primary - Large Secondary - Red

iii. Production category:

Open Cast Chromite Mine

iv. Year of establishment:

2000

v. Date of the last Environmental Statement submitted: 26.9.2016

PART - B

Water and Raw Material Consumption:

i. Water consumption in m³/day

Process (COB Plant): 220 M<sup>3</sup>/Day

Cooling: Not Applicable

Domestic: 50 M<sup>3</sup>/Day

|                    | Process water consumption per unit of products |                                            |  |  |  |  |
|--------------------|------------------------------------------------|--------------------------------------------|--|--|--|--|
| Name of Products   | During the current financial year(2015-16)     | During the current financial year(2016-17) |  |  |  |  |
| Chrome Ore         | No water is required for mining of chrome ore  |                                            |  |  |  |  |
| Chrome concentrate | 2.07 KL/Ton                                    | 2.07 KL/Ton                                |  |  |  |  |

FOR BALASORE ALLOYS LTD.

**Authorised Signatory** 

ii. Raw material consumption: Raw material is consumed only in the C.O.B. Plant.

|                           |                       | Consumption of raw material per unit of output  |                                            |  |  |
|---------------------------|-----------------------|-------------------------------------------------|--------------------------------------------|--|--|
| Name of raw<br>materials* | Name of Products      | During the current last financial year(2015-16) | During the current financial year(2016-17) |  |  |
| Low Grade<br>Chrome Ore   | Chrome<br>Concentrate | 2.918 MT                                        | 2.918 MT                                   |  |  |

<sup>\*</sup> Industry may use codes if disclosing details of raw material would violate contractual obligations, otherwise all industries have to name the raw materials used.

### PART - C

Pollution discharged to environment/unit of output:

(Parameter as specified in the consent issued)

| •                                         |                                         |                                              |                                                        |
|-------------------------------------------|-----------------------------------------|----------------------------------------------|--------------------------------------------------------|
| Pollutants                                | Quantity of<br>Pollutants<br>discharged | Concentration of<br>Pollutants<br>discharged | Percentage of variation from prescribed standards with |
|                                           | (mass/day)                              | (mass/volume)                                | reasons                                                |
| Water                                     |                                         |                                              |                                                        |
| i. pH<br>ii. TSS<br>iii. Cr <sup>6+</sup> | 7.6<br>171106.6 mg<br>88.94 mg          | 7.76<br>43.8 mg/L<br>0.015 mg/L              | -13.71%<br>-61.20%<br>-59.67%                          |

FOR BALASORE ALLOYS LID.

**Authorised Signatory** 

| Air                      |                                                       |   |                                                                                                |                                                     |
|--------------------------|-------------------------------------------------------|---|------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| i.<br>ii.<br>iii.<br>iv. | PM 10<br>PM 2.5<br>SO <sub>2</sub><br>NO <sub>x</sub> | - | 60.86 μg/m <sup>3</sup> 25.51 μg/m <sup>3</sup> 6.59 μg/m <sup>3</sup> 12.39 μg/m <sup>3</sup> | -3913%<br>-57.48%<br>-91.75%<br>-84.50%<br>-92.75 % |
| v.<br>vi.<br>vii.        | CO<br>O <sub>3</sub><br>NH <sub>3</sub>               |   | 5.85 μg/m <sup>3</sup><br>26.26 μg/m <sup>3</sup>                                              | -96.75%<br>-93.43 %                                 |
| viii.                    | C <sub>6</sub> H <sub>6</sub><br>Bap                  |   | 0.32 μg/m <sup>3</sup><br>0.3 μg/m <sup>3</sup><br>0.20 μg/m <sup>3</sup>                      | -93.59 %<br>-70%<br>-79.98%                         |
| x.<br>xi.<br>xii.        | Pb<br>NI<br>As                                        |   | 0.26 μg/m <sup>3</sup><br><0.1 μg/m <sup>3</sup>                                               | -98.67<br>                                          |
|                          |                                                       |   |                                                                                                |                                                     |

### PART - D

### **HARZARDOUS WASTES:**

(As specified under Hazardous Wastes (Management & Handling Rules, 1989)

|                         | Total Quantity                              |                                            |  |  |
|-------------------------|---------------------------------------------|--------------------------------------------|--|--|
| Hazardous Wastes        | During the previous financial year(2015-16) | During the current financial year(2016-17) |  |  |
| From Process            |                                             |                                            |  |  |
| i. Used oil             | 4400 Ltrs                                   | 6720 Ltrs                                  |  |  |
| From Pollution Control  |                                             |                                            |  |  |
| Equipments (ETP sludge) | 25.00 Metric Ton                            | 38.97 Metric Ton                           |  |  |

For BALASOREALLOYS LITERATED TO BALASOREAL T

### PART - E

### SOLID WASTES:

|                                                     | Total Quantity                              |                                            |  |  |
|-----------------------------------------------------|---------------------------------------------|--------------------------------------------|--|--|
| Solid Wastes                                        | During the previous financial year(2015-16) | During the current financial year(2016-17) |  |  |
| From Process  i. Overburden ii. Tailing Pond Sludge | 426602 M <sup>3</sup><br>55200.769 Ton      | 438060 M <sup>3</sup><br>51104.57 Ton      |  |  |
| From Pollution Control<br>Facility                  | Nil                                         | Nil                                        |  |  |
| Quantity recycled or reutilized within the unit     | Nil                                         | Nil                                        |  |  |

### PART - F

Please specify the characteristics (in terms of concentration and quantum) of hazardous as well as solid wastes and indicate disposal practice adopted for both these categories of wastes:

### Solid Waste:

Overburden: Solid wastes in form of overburden and sludge of the tailing pond are generated during development of open cast mines and operation of Chrome Ore Beneficiation Plant. The overburden is being dumped on non-mineralized zone as per the mining plan approved by Indian Bureau of Mines.

Tailing Pond Sludge: The sludge of the tailing pond, after drying, are taken to the tailing dump, where these are dumped on a impervious platform made up of concrete and HDPE lining by providing retaining wall along the dump with settling pit and leachate collection pit. The collected run-off and leachate are diverted to the ETP for treatment with pumping For BALASORE ALLOYS LTD.

Authorised Signatory arrangement.

### II. Hazardous Waste:

**ETP Sludge:** The sludge from the ETP has been disposed to Common Hazardous Waste treatment Storage Disposal facility (M/s Ramky) present at Jajpur, Odisha.

**Used Oil:** The used oil generated at mines collected in leak proof barrels and stored at hazardous waste yard and disposed to OSPCB authorized vendors as per the guidelines.

### PART - G

In respect of the pollution abatement measures taken up on conservation of natural resources and on the cost of production

- To suppress the fugitive dust generation, regular sprinkling of water is being done on haul roads and transporting roads.
- The dead overburden dump surfaces are covered with intensive plantation. For treatment of mine discharge water, run-off water during rain an Effluent Treatment Plant is in operation.
- Regular maintenance of vehicle deployed at mines is going on for minimizing the noise generation and other emission. For the people in the noise prone areas protection equipments like ear muffs have been provided.
- Oil & Grease pit has been provided at vehicle washing center and after separation oil and grease has been stored at hazardous waste yard

#### PART - H

Additional measures/investment proposal for environmental protection including abatement of pollution:

- The dump slopes of the dead dumps will be covered with coir matting, grass turfing, grass development through seed dispersion and massive plantation.
- Hexavalent chromium content of the mine water is being/will be reduced by treatment of at ETP.
- All the surface runoff of mines has been channelized to ETP for treatment before disposing outside.
- Plantation at outside ML area and inside ML area.

#### PART - I

### Any other particular for improving the quality of the environment

- Gabion wall is constructed at toe of dump-1 to arrest wash off from dump slope.
- Dump slope has been stabilized by plantation of Vertiver and installation of coirmat.
- Construction of wheel washing bay at mine gate to avoid chromite contamination of by the dust carried by wheels of trucks.

For BALASORE ALLOYS LTD.

Authorised Signatory